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PAM (Dayhoff) and BLOSUM matrices

@ PAM1 matrix originally calculated from manual alignments of
highly conserved sequences (myoglobin, cytochrome C, etc.)

@ We can think of a PAM matrix as evolving a sequence by one
unit of time.

@ If evolution is uniform over time, then PAM matrices for larger
evolutionary steps can be generated by multiplying PAM1 by
itself (so, higher numbered PAM matrices represent greater
evolutionary distances).

@ The BLOSUM matrices were determined from automatically
generated ungapped alignments. Higher numbered BLOSUM
matrices correspond to smaller evolutionary distances.
BLOSUMBG? is the default matrix for BLAST.
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Motivation for scoring matrices

Frequency of residue i:
Pi
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Motivation for scoring matrices

Frequency of residue i:
Pi

Frequency of residue i aligned to residue j:
qij

Expected frequency if i and j are independent:
pipj

Ratio of observed to expected frequency:

qij
Pip;
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Motivation for scoring matrices

Frequency of residue i:

Pi
Frequency of residue i aligned to residue j:

qij
Expected frequency if i and j are independent:

pipj
Ratio of observed to expected frequency:

i

Pip;
Log odds (LOD) score:

s(i,j) = Iog%
1F])
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BLOSUM45 in alphabetical order
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Clustering amino acids on log odds scores

import networkx as nx
try:
import Pycluster
except ImportError:
import Bio.Cluster as Pycluster

class ScoreCluster:
def __init__(self, S, alpha_.aa = "ACDEFGHIKLMNPQRSTVWY" ):
""" Initialize from numpy array of scaled log odds scores.
(x,y) = S.shape
assert(x = y = len(alpha_aa))

# Interpret the largest score as a distance of zero

D = max(S.reshape(x*%2))—S

# Maximum—Ilinkage clustering , with a user—supplied distance matrix
tree = Pycluster.treecluster(distancematrix = D, method = "m")

# Use NetworkX to read out the amino—acids in clustered order
G = nx.DiGraph ()
for (n,i) in enumerate(tree):
for j in (i.left, i.right):
G.add_edge(—(n+1),j)

self.ordering = [i for i in nx.dfs_preorder(G, —len(tree)) if(i >= 0)]
self.names = "" . join(alpha_aa[i] for i in self.ordering)
self.C = self.permute(S)

def permute(self, S):
""" Given square matrix S in alphabetical order, return rows and columns
of S permuted to match the clustered order.”"”
return array ([[S[i][j] for j in self.ordering] for i in self.ordering])
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BLOSUM45 — maximum linkage clustering

"n<=EwnHdPrPn_<E-rOpUIAMUIUZIO

QHNDEKRPGLMV I CATSWYF
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BLOSUM®62 with BLOSUM45 ordering
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BLOSUMBS80 with BLOSUM45 ordering

"n<=EwnHdPrPn_<E-rOpUIAMUIUZIO

QHNDEKRPGLMV I CATSWYF
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Smith-Waterman

The implementation of local alignment is the same as for global
alignment, with a few changes to the rules:

o Initialize edges to 0 (no penalty for starting in the middle of a
sequence)

@ The maximum score is never less than 0, and no pointer is
recorded unless the score is greater than O (note that this
implies negative scores for gaps and bad matches)

@ The trace-back starts from the highest score in the matrix and
ends at a score of O (local, rather than global, alignment)

Because the naive implementation is essentially the same, the time
and space requirements are also the same.
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Timing CLU

Timing CLUSTALW from the command line:

for i in 50 100 150 200 250 300 350 400 450; do
head —n $i —q G217B_iron.fasta PbOl_.iron.fasta > temp.fasta;
time clustalw —infile=temp.fasta —type=DNA —align;

done

The output looks like this:

Sequences (1:2) Aligned. Score: 0
Guide tree file created: [temp.dnd]

There are 1 groups
Start of Multiple Alignment

Aligning ...
Group 1: Delayed
Alignment Score 7238

CLUSTAL—Alignment file created [temp.aln]

real 0m3.400s
user 0m3.388s
sys 0m0.012s
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Timing CLU

Format the timing results as CSV for your favorite curve fitting
program

#!/usr/bin/env python

# Time—stamp: <ParseTimes.py 2011—03—29 21:10:59 Mark Voorhies>

""" Parse wall times from a log file on stdin and write them as a CSV
formatted column for Excel/OpenOffice/etc on stdout. If command line
arguments are given, treat them as a second output column.”””

from csv import writer
import re
time_re = re.compile(”"real.x(?P<minutes >[\d]+)m(?P<seconds >[\d]+\.[\d]+)s" ,re.M)
if(-_name__ = " __main__"):
import sys
args = sys.argv[1l:]
out = writer(sys.stdout)
i =0
for t in time_re.finditer(sys.stdin.read()):
try:
y = args[i]
i 4+=1
except IndexError:
y =
out.writerow (

(float (t.group (" minutes”))*60+float(t.group(”seconds”)),y))
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Timing CLUSTALW

You can fit the timing results to a curve with SciPy.

y = AxB
logy = logAx®
= logA+ Blogx
= A + Blogx

Here is an R script that does the same thing:

data <— read.csv("timings.csv', header = FALSE, col.names = c("t","n"))
x <— log(data$n*80)

y <— log(data$t/60)

f<—Im(y ™ x)

x0 <— 0:40000

a <— exp(f$coeff[1])

b <— f$coeff[2]

pdf(” ClustalwTimings. pdf")

plot (data$nx80, data$t/60, xlab = "length/bp", ylab = "time/minutes”,
main = "CLUSTALW timings on Intel Core2 T730002.00GHz, 32bit")

points(x0, a*xx0"b, col = "blue”, type = "1")

legend (" topleft”, c("y = (1.8e—9)x"(2.08)"), col = "blue”, Ity = 1)

dev. off ()
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W takes O(MN) time

CLUSTALW timings on Intel Core2 T7300@2.00GHz, 32bit

— y=(1.8e-9)x"(2.08) °

time/minutes

T T T T T T T
5000 10000 15000 20000 25000 30000 35000

length/bp
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Basic Local Alignment Search Tool

Why BLAST?

@ Fast, heuristic approximation to a full Smith-Waterman local
alignment

@ Developed with a statistical framework to calculate expected
number of false positive hits.

@ Heuristics biased towards “biologically relevant” hits.
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Seeding searches

Most of the magic in a sequence-search tool lives in its indexing

scheme
Program | Purpose | Indexing
BLAST Database searching | Target indexing, 3aa or 11nt words
BLAT mRNA mapping Query indexing
BOWTIE(2) | RnaSeq Enhanced suffix tree (BWT)
HOBBES RnaSeq Inverted index for non-heuristic search
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BLAST: A quick overview

N\
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BLAST: Seed from exact word hits

N\

N\
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BLAST: Myers and Miller local alignment around seed pairs
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BLAST: High Scoring Pairs (HSPs)

N




Karlin-Altschul Statistics

E = kmne™°
e E: Expected number of “random” hits in a database of this
size scoring at least S.
@ S: HSP score
e m: Query length
o n: Database size
@ k: Correction for similar, overlapping hits
@ \: normalization factor for scoring matrix
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Karlin-Altschul Statistics

E = kmne *°

E: Expected number of “random” hits in a database of this
size scoring at least S.

S: HSP score

m: Query length

n: Database size

k: Correction for similar, overlapping hits

@ \: normalization factor for scoring matrix

A variant of this formula is used to generate sum probabilities for
combined HSPs.

p:l—e_E

(If you care about the difference between E and p, you're already
in trouble)
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Karlin-Altschul Statistics

Important points:
@ Extreme value distribution
@ Assumption of infinite sequence length

@ No rigorous framework for gap statistics (hmmer3 tries to fill
this gap)
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Gapped BLAST: Merge neighboring HSPs




How fast is BLAST?
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How fast is BLAST?

@ NCBI Blast HeG2L78,iron (40000 letters) - Mozills Frefox OE
Fle Edit View History Bookmarks Tools Help
& > v @ O @ 2/ htpiblast.ncbinim.nih.govlast.cgi v | [$F v blast @
£ BLAST: Basic Local .. @ | BMS 270: Practical B... @ | Nucleotide BLAST: A.. € | & NCBIBlastHcG2178... @ | BMS 270: Practical B... @ |@ ScienceDirect - jour.. @ v
Mouse-over to show defline and scores, cck to show aligrments T «
Color key for alignment scores
<40
Quuyl [l [l ] ] |
1 8000 16000 24000 32000 40000
¥ Dot Matrix View
Plot of Ic]17659 vs 17661 ©
_—
—~
-
M \
5 \
= ~
I ot ottt o o bbb odional b nuflunofbootono s,
Icli7658 15K ER ER B 3K 33,968
¥ Descrintions v

hitpfblast.ncbi.nlm.nih.gov/Blast cgi# s

Mark Voorhies Practical Bioinformatics



How fast is BLAST

time bl2seq —p blastn —i G217B_iron.fasta —j PbOl_iron.fasta —e le—6 > temp.blastn
real 0m0.342s
user 0m0.080s
sys 0m0.032s
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The basic flavors of BLAST

Target Protein DNA
Query
Protein | BLASTP | TBLASTN
DNA BLASTX | BLASTN

TBLASTX
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@ BLAST is very fast, at the expense of not guaranteeing
globally optimal results
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@ BLAST is very fast, at the expense of not guaranteeing
globally optimal results

@ But the trade-offs that it makes are biased towards
“biologically relevant” results
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@ BLAST is very fast, at the expense of not guaranteeing
globally optimal results

@ But the trade-offs that it makes are biased towards
“biologically relevant” results

@ And it provides a statistical framework for evaluating its
results.
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0" order Markov Model
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1°t order Markov Model
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1°t order Markov Model
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1°t order Markov Model
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What are Markov Models good for?

@ Background sequence composition

@ Spam
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Hidden Markov Models

e 5'UTR Intron Start
.\/ Intergenic Eio( Intron\\
h \__ '3.'UTR’z \ Intron Stop
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Hidden Markov Models

e 5'UTR \/rlntron Start

A " Intergenic Exon Intron\\
\\/ \__ '3.'UTR’z \ Intron Stop
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Hidden Markov Models

e 5'UTR \/rlntron Start

A A Intergenic Exon Intron

T T . \__ 3'UTR/\ Intron Stoé
>/

\
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Hidden Markov Models

e 5'UTR \/rlntron Start

A Intergenic Exon Intron

T T \__ 3'UTR/\ Intron Stoé

TG
‘4
\
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Hidden Markov Models

e 5'UTR \/rlntron Start

A :
A Intergenic Exon Intron
T T A \__ 3'UTR/\Intron Stoé
T G
A A
A
C
G
G
A
A
G
G
A

N
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Hidden Markov Model




The Viterbi algorithm: Alignment

A_—
(\/.Q

A >4H4>N0>»4H>0
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The Viterbi algorithm: Alignment
CH

. @ Dynamic programming, like
—

Smith-Waterman

2 \i/ @ Sums best log probabilities
of emissions and transitions

T \L (i.e., multiplying

A \L independent probabilities)

f\ - o Result is most likely

74 - annotation of the target
; \L with hidden states
1=
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The Forward algorithm: Net probability

@ Probability-weighted sum
—) over all possible paths

)

. @ Simple modification of
— Q Viterbi (although summing
probabilities means we have
to be more careful about
rounding error)

@ Result is the probability that
the observed sequence is
explained by the model

@ In practice, this probability
is compared to that of a null
model (e.g., random
genomic sequence)

>4 >N>»4H>0
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Training an HMM

o If we have a set of sequences
with known hidden states
(e.g., from experiment),
then we can calculate the
emission and transition

G)I O
I I [I @ probabilities directly
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Training an HMM

o If we have a set of sequences
with known hidden states
(e.g., from experiment),
then we can calculate the

CH—
. .@ emission and transition
probabilities directly
@ Otherwise, they can be
iteratively fit to a set of
unlabeled sequences that are
known to be true matches
to the model
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Training an HMM

o If we have a set of sequences
with known hidden states

G‘ — (e.g., from experiment),

. then we can calculate the
6 Q emission and transition

probabilities directly

@ Otherwise, they can be
iteratively fit to a set of
unlabeled sequences that are
known to be true matches
to the model

@ The most common fitting
procedure is the
Baum-Welch algorithm, a
special case of expectation
maximization (EM)
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Profile Alignments: Plan 7

Oy Ky Erer
el
D> > D B

(Image from Sean Eddy, PLoS Comp. Biol. 4:¢1000069)
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Profile Alignments: Plan 7 (from Outer Space)

(Image from Sean Eddy, PLoS Comp. Biol. 4:¢1000069)
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Rigging Plan 7 for Multi-Hit Alignment

(Image from Sean Eddy, PLoS Comp. Biol. 4:¢1000069)



HMMer3 speeds
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Eddy, PLoS Comp. Biol. 7:¢1002195
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HMMer3 sensitivity and specificity

random (iid) negatives monoshuffled negatives;
one homologous region per positive two homologous regions per positive
Fp— L 1 L L L 1 L 1
0.94 A B - 0.9
H3 (no filters) 0.8
e 10000099 ] 300000000000000000FTT T
2 0.7
= (o
2 A 06
3 H2 (loca E 0.5
5 : H2 (local) 4 - 0.4
c WU BLASTP :
2 0.3 FASTA o\ 0.3
S CBI BLASTP P\@C
£ 02 e 0.2
0.1 WU BLASTRAZRSTA 0.1
T T T T T T T T 0
0.001 0.01 0.1 1 10 0.001 0.01 0.1 1 10
mean false positives per search mean false positives per search

Eddy, PLoS Comp. Biol. 7:¢1002195
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Stochastic Context Free Grammars

@ <~
€S (&5

@ Can emit from both sides — base pairs

@ Can duplicate emitter — bifurcations
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INFERNAL /Rfam

input multiple alignment: example structure: UU

C.GGm
[stucture] . : : <<= >- >>; <<mmm. B> A
humen . AAGACUUCGGAUCUGGCH . .Bcc. AU
mouse aUACACUUCGGAUG - CACH. .BUGa T
orc . AGGUCUUC - GCACGGGCA9ECA cluc A GGG
i 5 1 b el
ROOT
quide tree: § m:;t < \@o
BIF__ 4] &\)
BEGL 5 [BEGR 15
4 ATP _6p14 15 ATL 16
5 ATP _7p13 16 A 17p27
ATR 12 174MATP 18) 26
64 MATP 11 18<[MATE9]
7qMA 19 (HIATRIZ0) 25
8MA 21< AT
oA 22<EIATINS2]
10 MAT 23<RIATEES]
[END END 24

Modified from the INFERNAL User Guide — Nawrocki, Kolbe, and Eddy
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INFERNAL /Rfam

input multiple alignment: example structure: UU

e
[stucture] . : : <<= >- >>: <<E . B> A
humen . AAGACUUCGGAUCUGGCH . .Bcc. AU
mouse aUACACUUCGGAUG - CACH. .BUGa T
orc . AGGUCUUC - GCACGGGCA9ECA cluc A S
1 5 10 15 LCCCa
ROOT
. 2 MATL 2
guide tree: WAL 3] A QO \
BIF__ 4] &\g_)
BEGL 5 [BEGR 15
4 ATP _6p14 15 ATL 16
5 ATP _7p13 16 A 17p27
ATR 12 174MATP 18) 26
64 MATP 11 18<[MATE9]
7qMA 19 (HIATRIZ0) 25
8MA 21< AT
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10 MAT 23<RIATEES]
[END END 24

Modified from the INFERNAL User Guide — Nawrocki, Kolbe, and Eddy

Mark Voorhies Practical Bioinformatics



INFERNAL /Rfam

input multiple alignment: example structure: UU

C.GGm
[stucture] . : : <<= >- >>; <<mmm. B> A
humen . AAGACUUCGGAUCUGGES . i [ AU
mouse aUACACUUCGGAUG - CACH. .BUGa T
orc . AGGUCUUC - GCACGGGCA9ECA cluc A GGG
H 5 o I
LC.La
ROOT
. 2 MATL 2
quide tree: WAL 3] AG Q
BIF__ 4] oo
BEGL 5 BEGR 15 &@)
4 ATP _6p14 15 ATL 16
5 ATP _7p13 16 A 17p27
ATR _8p12  174MATP 18)26
64 MATP 11 18<[MATE9]
7qMA 10QEIATRRZ0) 25
8MA 21< AT
oA 22<EIATINS2]
10 AT 23 NIATEES]
[END END 24

Modified from the INFERNAL User Guide — Nawrocki, Kolbe, and Eddy
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INFERNAL /Rfam

input multiple alignment: example structure: UU

e
[stucture] . : : <<= >- >>: <<E . B> A
humen . AAGACUUCGGAUCUGGE Ecc AU
mouse aUACACUUCGGAUG - CAC .BUGa T
orc . AGGUCUUC - GCACGGGCA9ECA cluc A S
H 5 o I " A
ROOT
. 2 MATL 2
quide tree: WAL 3] AG “
BIF__ 4] oo
BEGL 5 BEGR 15 &\‘8‘) Q@@
4 ATP _6p14 15 ATL 16
5¢ ATP _7p13 16 A 17p27 &\3.)
ATR _8p12  174MATP 18)26
64 MATP 11 18<[MATE9]
7qMA 10QEIATRRZ0) 25
8MA 21< AT
oA 22<EIATINS2]
10 AT 23 NIATEES]
[END END 24

Modified from the INFERNAL User Guide — Nawrocki, Kolbe, and Eddy
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INFERNAL /Rfam

input multiple alignment: example structure: UU ('Gm

[structure] @@ <<< o >->>: <<pmm. B> C'GA
humen . AAGACUUCGGAUCUGGES . @gcc. AU
mouse aUACACUUCGGAUG - CACH. UGa T

orc . AGGUCUUC - GCACGGGCA9ECA cluc A GGG
H 5 o I 2 &e
ROOT
. 2 MATL 2
ide tree:
guide tree: 3 A

BEGL 5
4{MATP_6
5 ATP 7
ATR
64 MATP
7MA
8 MA
9(MA
10 MAT
[END END 24

Modified from the INFERNAL User Guide — Nawrocki, Kolbe, and Eddy
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INFERNAL /Rfam

input multiple alignment: example structure: UU ('Gm
[stucture] . : : <<= >- >>; <<mmm. B> C:Gy
human . AAGACUUCGGAUCUGGCE . .@CcC. sA-U
mouse aUACACUUCGGAUG - CACE. UGa A g
orc . AGGUCUUC - GCACGGGCAGBCA cliuc . oA 8cG
i 5 10 I 30 Y] EE CA
¢
ROOT
. 2{VATL 2
guide tree: WAL 3] A
BIF__ 4]
BEGL 5 [BEGR 15
4{MATP_6p14 15 MATL 16
sqUATP_7p13 164 MATP 17)p27
ATR_8p12  174MATP 18) 26
64 MATP 11 18<[MATE9]
7{MA 19 (HIATRIZ0) 25
8(MA 21<IMATIRN
o(MA 22<EIATINS2]
10 AT 23<NIATIgS]
[END END 24

Modified from the INFERNAL User Guide — Nawrocki, Kolbe, and Eddy
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INFERNAL /Rfam

input multiple alignment: example structure: UU LGm
[stucture] . : : <<= >- >>; <<mmm. B> “oa
human . AAGACUUCGGAUCUGGCE . .@cc. AU
mouse aUACACUUCGGAUG - CACH. .BUGa A g
orc . AGGUCUUC - GCACGGGCAGBCA cliuc . A GGG
1 5 10 15 20 %5 2 CCChp
£0C
RGOT
quide tree: 2 MATL_ 2 A
3(MATL 3] G
BIF__ 4] G
- U Ao\
BEGL 5 BEGR 15
4{MATP_6p14
sqMATP_7p13
ATR 812
6{MATP_9)p11
7R
sMA
9(MA
10{MAT
[END END 24

Modified from the INFERNAL User Guide — Nawrocki, Kolbe, and Eddy
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Homework

@ Download CLUSTALX and JalView

@ Keep working on your dynamic programming code.
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