
Introduction to Python

Practical Bioinformatics

Mark Voorhies

4/24/2017

Mark Voorhies Practical Bioinformatics

Introduction to Python

Resources

Course website:

http://histo.ucsf.edu/BMS270/

Resources on the course website:

Syllabus

Papers and code (for downloading before class)
Slides and transcripts (available after class)

On-line textbooks (Dive into Python, Numerical Recipes, ...)

Programs for this course (Canopy, Cluster3, JavaTreeView, ...)

Mark Voorhies Practical Bioinformatics

Introduction to Python

Homework

E-mail Mark your python sessions (.ipynb files) after class

E-mail Mark any homework code/results before tomorrow’s
class

It is fine to work together and to consult books, the web, etc.
(but let me know if you do)

It is fine to e-mail Mark questions

Don’t blindly copy-paste other people’s code (you won’t learn)

If you get stuck, try working things out on paper first.

Mark Voorhies Practical Bioinformatics

Introduction to Python

Homework

E-mail Mark your python sessions (.ipynb files) after class

E-mail Mark any homework code/results before tomorrow’s
class

It is fine to work together and to consult books, the web, etc.
(but let me know if you do)

It is fine to e-mail Mark questions

Don’t blindly copy-paste other people’s code (you won’t learn)

If you get stuck, try working things out on paper first.

Mark Voorhies Practical Bioinformatics

Introduction to Python

Homework

E-mail Mark your python sessions (.ipynb files) after class

E-mail Mark any homework code/results before tomorrow’s
class

It is fine to work together and to consult books, the web, etc.
(but let me know if you do)

It is fine to e-mail Mark questions

Don’t blindly copy-paste other people’s code (you won’t learn)

If you get stuck, try working things out on paper first.

Mark Voorhies Practical Bioinformatics

Introduction to Python

Goals

At the end of this class, you should have the confidence to take on
the day to day tasks of “bioinformatics”.

Analyzing data.

Writing standalone scripts.

Shepherding data between analysis tools.

Aggregating data from multiple sources.

Implementing new methods from the literature.

This is also good preparation for communicating with
computational collaborators.

Mark Voorhies Practical Bioinformatics

Introduction to Python

Goals

At the end of this class, you should have the confidence to take on
the day to day tasks of “bioinformatics”.

Analyzing data.

Writing standalone scripts.

Shepherding data between analysis tools.

Aggregating data from multiple sources.

Implementing new methods from the literature.

This is also good preparation for communicating with
computational collaborators.

Mark Voorhies Practical Bioinformatics

Introduction to Python

Goals

At the end of this class, you should have the confidence to take on
the day to day tasks of “bioinformatics”.

Analyzing data.

Writing standalone scripts.

Shepherding data between analysis tools.

Aggregating data from multiple sources.

Implementing new methods from the literature.

This is also good preparation for communicating with
computational collaborators.

Mark Voorhies Practical Bioinformatics

Introduction to Python

Goals

At the end of this class, you should have the confidence to take on
the day to day tasks of “bioinformatics”.

Analyzing data.

Writing standalone scripts.

Shepherding data between analysis tools.

Aggregating data from multiple sources.

Implementing new methods from the literature.

This is also good preparation for communicating with
computational collaborators.

Mark Voorhies Practical Bioinformatics

Introduction to Python

Goals

At the end of this class, you should have the confidence to take on
the day to day tasks of “bioinformatics”.

Analyzing data.

Writing standalone scripts.

Shepherding data between analysis tools.

Aggregating data from multiple sources.

Implementing new methods from the literature.

This is also good preparation for communicating with
computational collaborators.

Mark Voorhies Practical Bioinformatics

Introduction to Python

Goals

At the end of this class, you should have the confidence to take on
the day to day tasks of “bioinformatics”.

Analyzing data.

Writing standalone scripts.

Shepherding data between analysis tools.

Aggregating data from multiple sources.

Implementing new methods from the literature.

This is also good preparation for communicating with
computational collaborators.

Mark Voorhies Practical Bioinformatics

Introduction to Python

Goals

At the end of this class, you should have the confidence to take on
the day to day tasks of “bioinformatics”.

Analyzing data.

Writing standalone scripts.

Shepherding data between analysis tools.

Aggregating data from multiple sources.

Implementing new methods from the literature.

This is also good preparation for communicating with
computational collaborators.

Mark Voorhies Practical Bioinformatics

Introduction to Python

Course problems: expression and sequence analysis

Part 2: Genotype
(Sequence analysis)

Part 1: Phenotype
(Expression profiling)

Mark Voorhies Practical Bioinformatics

Introduction to Python

Course problems: expression and sequence analysis

Part 2: Genotype
(Sequence analysis)

Part 1: Phenotype
(Expression profiling)

Mark Voorhies Practical Bioinformatics

Introduction to Python

Course tool: Python

Mark Voorhies Practical Bioinformatics

Introduction to Python

Python distribution: Enthought Canopy

Mark Voorhies Practical Bioinformatics

Introduction to Python

Python distribution: Enthought Canopy

Mark Voorhies Practical Bioinformatics

Introduction to Python

Python distribution: Enthought Canopy

Mark Voorhies Practical Bioinformatics

Introduction to Python

Python shell: ipython (jupyter) notebook

Mark Voorhies Practical Bioinformatics

Introduction to Python

Anatomy of a Programming Language

Mark Voorhies Practical Bioinformatics

Introduction to Python

Anatomy of a Programming Language

Mark Voorhies Practical Bioinformatics

Introduction to Python

Anatomy of a Programming Language

Mark Voorhies Practical Bioinformatics

Introduction to Python

Anatomy of a Programming Language

Mark Voorhies Practical Bioinformatics

Introduction to Python

Talking to Python: Nouns

This i s a comment
This i s an i n t (i n t e g e r)
42
This i s a f l o a t (r a t i o n a l number)
4 . 2
These a r e a l l s t r i n g s (s equence s o f c h a r a c t e r s)
’ATGC ’

” Mendel ’ s Laws”

”””>CAA36839 . 1 Ca lmodu l in
MADQLTEEQIAEFKEAFSLFDKDGDGTITTKELGTVMRSLGQNPTEAEL
QDMINEVDADDLPGNGTIDFPEFLTMMARKMKDTDSEEEIREAFRVFDK
DGNGYISAAELRHVMTNLGEKLTDEEVDEMIREADIDGDGQVNYEEFVQ
MMTAK”””

Mark Voorhies Practical Bioinformatics

Introduction to Python

Python as a Calculator

Add i t i on
1+1
Sub t r a c t i o n
2−3
Mu l t i p l i c a t i o n
3∗5
D i v i s i o n (gotcha : be s u r e to use f l o a t s)
5 / 3 . 0
Exponen t i a t i o n
2∗∗3
Order o f o p e r a t i o n s
2∗3−(3+4)∗∗2

Mark Voorhies Practical Bioinformatics

Introduction to Python

Remembering objects

Use a s i n g l e = f o r a s s i gnment :
TLC = ”GATACA”
YFG = ”CTATGT”
MFG = ”CTATGT”

A name can occu r on both s i d e s o f an as s i gnment :
c o d o n p o s i t i o n = 1857
c o d o n p o s i t i o n = c o d o n p o s i t i o n + 3

Short−hand f o r common updates :
codon += 3
w e i g h t −= 10
e x p r e s s i o n ∗= 2
CFU /= 1 0 . 0

Mark Voorhies Practical Bioinformatics

Introduction to Python

Python as a Calculator

1 Calculate the molarity of a 70mer oligonucleotide with
A260 = .03 using the formula from Maniatis:

C =
.02A260

330L
(1)

2 Calculate the Tm of a QuickChange mutagenesis primer with
length 25bp (L = 25), 13 GC bases (nGC = 13), and 2
mismatches to the template (nMM = 2) using the formula
from Stratagene:

Tm = 81.5 +
41nGC − 100nMM − 675

L
(2)

Mark Voorhies Practical Bioinformatics

Introduction to Python

Displaying values with print

Use p r i n t to show the v a l u e o f an o b j e c t
message = ” H e l l o , w o r l d ”
p r i n t (message)
Or s e v e r a l o b j e c t s :
p r i n t (1 , 2 , 3 , 4)
Older v e r s i o n s o f Python use a
d i f f e r e n t p r i n t s yn tax
p r i n t ” H e l l o , w o r l d ”

Mark Voorhies Practical Bioinformatics

Introduction to Python

Comparing objects

Use doub l e == f o r compar i son :
YFG == MFG

Other compar i son o p e r a t o r s :
Not equa l :
TLC != MFG
Les s than :
3 < 5
Grea t e r than , o r equa l to :
7 >= 6

Mark Voorhies Practical Bioinformatics

Introduction to Python

Making decisions

i f (YFG == MFG) :
p r i n t ”Synonyms ! ”

i f (p r o t e i n l e n g t h < 6 0) :
p r i n t ” P r o b a b l y too s h o r t to f o l d . ”

e l i f (p r o t e i n l e n g t h > 1 0 0 0 0) :
p r i n t ”What i s t h i s , t i t i n ?”

e l s e :
p r i n t ”Okay , t h i s l o o k s r e a s o n a b l e . ”

Mark Voorhies Practical Bioinformatics

Introduction to Python

Collections of objects

A l i s t i s a mutable sequence o f o b j e c t s
m y l i s t = [1 , 3 .1415926535 , ”GATACA” , 4 , 5]
Ind e x i n g
m y l i s t [0] == 1
m y l i s t [−1] == 5
As s i g n i n g by i ndex
m y l i s t [0] = ”ATG”
S l i c i n g
m y l i s t [1 : 3] == [3 . 1 4 1 5 9 2 6 5 3 5 , ”GATACA”]
m y l i s t [: 2] == [1 , 3 . 1 4 1 5 9 2 6 5 3 5]
m y l i s t [3 :] == [4 , 5]
As s i g n i n g a second name to a l i s t
a l s o m y l i s t = m y l i s t
As s i g n i n g to a copy o f a l i s t
m y o t h e r l i s t = m y l i s t [:]

Mark Voorhies Practical Bioinformatics

Introduction to Python

Repeating yourself: iteration

A f o r l oop i t e r a t e s th rough a l i s t one e l ement
at a t ime :
f o r i i n [1 , 2 , 3 , 4 , 5] :

p r i n t i , i ∗∗2

A wh i l e l oop i t e r a t e s f o r as l ong as a c o n d i t i o n
i s t r u e :
p o p u l a t i o n = 1
whi le (p o p u l a t i o n < 1 e5) :

p r i n t p o p u l a t i o n
p o p u l a t i o n ∗= 2

Mark Voorhies Practical Bioinformatics

Introduction to Python

Verb that noun!

return value = function(parameter, ...)
“Python, do function to parameter”

Bu i l t−i n f u n c t i o n s
Genera te a l i s t from 0 to n−1
a = range (5)
Sum ove r an i t e r a b l e o b j e c t
sum(a)
Find the l e n g t h o f an o b j e c t
l en (a)

Mark Voorhies Practical Bioinformatics

Introduction to Python

Verb that noun!

return value = function(parameter, ...)
“Python, do function to parameter”

Impo r t i ng f u n c t i o n s from modules
import numpy
numpy . s q r t (9)

import m a t p l o t l i b . p y p l o t as p l t
f i g = p l t . f i g u r e ()
p l t . p l o t ([1 , 2 , 3 , 4 , 5] ,

[0 , 1 , 0 , 1 , 0])

from IPython . c o r e . d i s p l a y import d i s p l a y
d i s p l a y (f i g)

Mark Voorhies Practical Bioinformatics

Introduction to Python

New verbs

def f u n c t i o n (parameter1 , parameter2) :
”””Do t h i s ! ”””
Code to do t h i s
return r e t u r n v a l u e

Mark Voorhies Practical Bioinformatics

Introduction to Python

Summary

Python is a general purpose programming language.

We can extend Python’s built-in functions by defining our own
functions (or by importing third party modules).

We can define complex behaviors through control statements
like “for”, “while”, and “if”.

We can use an interactive Python session to experiment with
new ideas and to explore data.

Saving interactive sessions is a good way to document our
computer “experiments”.

Likewise, we can use modules and scripts to document our
computer “protocols”.

Most of these statements are applicable to any programming
language (Perl, R, Bash, Java, C/C++, FORTRAN, ...)

Mark Voorhies Practical Bioinformatics

Introduction to Python

Summary

Python is a general purpose programming language.

We can extend Python’s built-in functions by defining our own
functions (or by importing third party modules).

We can define complex behaviors through control statements
like “for”, “while”, and “if”.

We can use an interactive Python session to experiment with
new ideas and to explore data.

Saving interactive sessions is a good way to document our
computer “experiments”.

Likewise, we can use modules and scripts to document our
computer “protocols”.

Most of these statements are applicable to any programming
language (Perl, R, Bash, Java, C/C++, FORTRAN, ...)

Mark Voorhies Practical Bioinformatics

Introduction to Python

Summary

Python is a general purpose programming language.

We can extend Python’s built-in functions by defining our own
functions (or by importing third party modules).

We can define complex behaviors through control statements
like “for”, “while”, and “if”.

We can use an interactive Python session to experiment with
new ideas and to explore data.

Saving interactive sessions is a good way to document our
computer “experiments”.

Likewise, we can use modules and scripts to document our
computer “protocols”.

Most of these statements are applicable to any programming
language (Perl, R, Bash, Java, C/C++, FORTRAN, ...)

Mark Voorhies Practical Bioinformatics

Introduction to Python

Summary

Python is a general purpose programming language.

We can extend Python’s built-in functions by defining our own
functions (or by importing third party modules).

We can define complex behaviors through control statements
like “for”, “while”, and “if”.

We can use an interactive Python session to experiment with
new ideas and to explore data.

Saving interactive sessions is a good way to document our
computer “experiments”.

Likewise, we can use modules and scripts to document our
computer “protocols”.

Most of these statements are applicable to any programming
language (Perl, R, Bash, Java, C/C++, FORTRAN, ...)

Mark Voorhies Practical Bioinformatics

Introduction to Python

Summary

Python is a general purpose programming language.

We can extend Python’s built-in functions by defining our own
functions (or by importing third party modules).

We can define complex behaviors through control statements
like “for”, “while”, and “if”.

We can use an interactive Python session to experiment with
new ideas and to explore data.

Saving interactive sessions is a good way to document our
computer “experiments”.

Likewise, we can use modules and scripts to document our
computer “protocols”.

Most of these statements are applicable to any programming
language (Perl, R, Bash, Java, C/C++, FORTRAN, ...)

Mark Voorhies Practical Bioinformatics

Introduction to Python

Summary

Python is a general purpose programming language.

We can extend Python’s built-in functions by defining our own
functions (or by importing third party modules).

We can define complex behaviors through control statements
like “for”, “while”, and “if”.

We can use an interactive Python session to experiment with
new ideas and to explore data.

Saving interactive sessions is a good way to document our
computer “experiments”.

Likewise, we can use modules and scripts to document our
computer “protocols”.

Most of these statements are applicable to any programming
language (Perl, R, Bash, Java, C/C++, FORTRAN, ...)

Mark Voorhies Practical Bioinformatics

Introduction to Python

Summary

Python is a general purpose programming language.

We can extend Python’s built-in functions by defining our own
functions (or by importing third party modules).

We can define complex behaviors through control statements
like “for”, “while”, and “if”.

We can use an interactive Python session to experiment with
new ideas and to explore data.

Saving interactive sessions is a good way to document our
computer “experiments”.

Likewise, we can use modules and scripts to document our
computer “protocols”.

Most of these statements are applicable to any programming
language (Perl, R, Bash, Java, C/C++, FORTRAN, ...)

Mark Voorhies Practical Bioinformatics

Introduction to Python

Homework: Make your own Fun

Write functions for these calculations, and test them on random
data:

1 Mean:

x̄ =

∑N
i xi
N

2 Standard deviation:

σx =

√∑N
i (xi − x̄)2

N − 1

3 Correlation coefficient (Pearson’s r):

r(x , y) =

∑
i (xi − x̄)(yi − ȳ)√∑

i (xi − x̄)2
√∑

i (yi − ȳ)2

Mark Voorhies Practical Bioinformatics

	Introduction to Python

