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Introduction to Python

Resources

Course website:

http://histo.ucsf.edu/BMS270/

Resources on the course website:

Syllabus

Papers and code (for downloading before class)
Slides and transcripts (available after class)

On-line textbooks (Dive into Python, Numerical Recipes, ...)

Programs for this course (Canopy, Cluster3, JavaTreeView, ...)
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Introduction to Python

Homework

E-mail Mark your python sessions (.ipynb files) after class

E-mail Mark any homework code/results before tomorrow’s
class

It is fine to work together and to consult books, the web, etc.
(but let me know if you do)

It is fine to e-mail Mark questions

Don’t blindly copy-paste other people’s code (you won’t learn)

If you get stuck, try working things out on paper first.
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Introduction to Python

Goals

At the end of this class, you should have the confidence to take on
the day to day tasks of “bioinformatics”.

Analyzing data.

Writing standalone scripts.

Shepherding data between analysis tools.

Aggregating data from multiple sources.

Implementing new methods from the literature.

This is also good preparation for communicating with
computational collaborators.
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Introduction to Python

Course problems: expression and sequence analysis

Part 2: Genotype
(Sequence analysis)

Part 1: Phenotype
(Expression profiling)
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Course tool: Python
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Python distribution: Enthought Canopy
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Introduction to Python

Python shell: ipython (jupyter) notebook
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Anatomy of a Programming Language
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Talking to Python: Nouns

# This i s a comment
# This i s an i n t ( i n t e g e r )
42
# This i s a f l o a t ( r a t i o n a l number )
4 . 2
# These a r e a l l s t r i n g s ( s equence s o f c h a r a c t e r s )
’ATGC ’

” Mendel ’ s Laws”

”””>CAA36839 . 1 Ca lmodu l in
MADQLTEEQIAEFKEAFSLFDKDGDGTITTKELGTVMRSLGQNPTEAEL
QDMINEVDADDLPGNGTIDFPEFLTMMARKMKDTDSEEEIREAFRVFDK
DGNGYISAAELRHVMTNLGEKLTDEEVDEMIREADIDGDGQVNYEEFVQ
MMTAK”””
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Introduction to Python

Python as a Calculator

# Add i t i on
1+1
# Sub t r a c t i o n
2−3
# Mu l t i p l i c a t i o n
3∗5
# D i v i s i o n ( gotcha : be s u r e to use f l o a t s )
5 / 3 . 0
# Exponen t i a t i o n
2∗∗3
# Order o f o p e r a t i o n s
2∗3−(3+4)∗∗2
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Remembering objects

# Use a s i n g l e = f o r a s s i gnment :
TLC = ”GATACA”
YFG = ”CTATGT”
MFG = ”CTATGT”

# A name can occu r on both s i d e s o f an as s i gnment :
c o d o n p o s i t i o n = 1857
c o d o n p o s i t i o n = c o d o n p o s i t i o n + 3

# Short−hand f o r common updates :
codon += 3
w e i g h t −= 10
e x p r e s s i o n ∗= 2
CFU /= 1 0 . 0
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Python as a Calculator

1 Calculate the molarity of a 70mer oligonucleotide with
A260 = .03 using the formula from Maniatis:

C =
.02A260

330L
(1)

2 Calculate the Tm of a QuickChange mutagenesis primer with
length 25bp (L = 25), 13 GC bases (nGC = 13), and 2
mismatches to the template (nMM = 2) using the formula
from Stratagene:

Tm = 81.5 +
41nGC − 100nMM − 675

L
(2)
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Introduction to Python

Displaying values with print

# Use p r i n t to show the v a l u e o f an o b j e c t
message = ” H e l l o , w o r l d ”
p r i n t ( message )
# Or s e v e r a l o b j e c t s :
p r i n t ( 1 , 2 , 3 , 4 )
# Older v e r s i o n s o f Python use a
# d i f f e r e n t p r i n t s yn tax
p r i n t ” H e l l o , w o r l d ”
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Introduction to Python

Comparing objects

# Use doub l e == f o r compar i son :
YFG == MFG

# Other compar i son o p e r a t o r s :
# Not equa l :
TLC != MFG
# Les s than :
3 < 5
# Grea t e r than , o r equa l to :
7 >= 6
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Introduction to Python

Making decisions

i f (YFG == MFG) :
p r i n t ”Synonyms ! ”

i f ( p r o t e i n l e n g t h < 6 0 ) :
p r i n t ” P r o b a b l y too s h o r t to f o l d . ”

e l i f ( p r o t e i n l e n g t h > 1 0 0 0 0 ) :
p r i n t ”What i s t h i s , t i t i n ?”

e l s e :
p r i n t ”Okay , t h i s l o o k s r e a s o n a b l e . ”
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Collections of objects

# A l i s t i s a mutable sequence o f o b j e c t s
m y l i s t = [ 1 , 3 .1415926535 , ”GATACA” , 4 , 5 ]
# Ind e x i n g
m y l i s t [ 0 ] == 1
m y l i s t [−1] == 5
# As s i g n i n g by i ndex
m y l i s t [ 0 ] = ”ATG”
# S l i c i n g
m y l i s t [ 1 : 3 ] == [ 3 . 1 4 1 5 9 2 6 5 3 5 , ”GATACA” ]
m y l i s t [ : 2 ] == [ 1 , 3 . 1 4 1 5 9 2 6 5 3 5 ]
m y l i s t [ 3 : ] == [ 4 , 5 ]
# As s i g n i n g a second name to a l i s t
a l s o m y l i s t = m y l i s t
# As s i g n i n g to a copy o f a l i s t
m y o t h e r l i s t = m y l i s t [ : ]

Mark Voorhies Practical Bioinformatics



Introduction to Python

Repeating yourself: iteration

# A f o r l oop i t e r a t e s th rough a l i s t one e l ement
# at a t ime :
f o r i i n [ 1 , 2 , 3 , 4 , 5 ] :

p r i n t i , i ∗∗2

# A wh i l e l oop i t e r a t e s f o r as l ong as a c o n d i t i o n
# i s t r u e :
p o p u l a t i o n = 1
whi le ( p o p u l a t i o n < 1 e5 ) :

p r i n t p o p u l a t i o n
p o p u l a t i o n ∗= 2
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Verb that noun!

return value = function(parameter, ...)
“Python, do function to parameter”

# Bu i l t−i n f u n c t i o n s
# Genera te a l i s t from 0 to n−1
a = range ( 5 )
# Sum ove r an i t e r a b l e o b j e c t
sum( a )
# Find the l e n g t h o f an o b j e c t
l en ( a )
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Verb that noun!

return value = function(parameter, ...)
“Python, do function to parameter”

# Impo r t i ng f u n c t i o n s from modules
import numpy
numpy . s q r t ( 9 )

import m a t p l o t l i b . p y p l o t as p l t
f i g = p l t . f i g u r e ( )
p l t . p l o t ( [ 1 , 2 , 3 , 4 , 5 ] ,

[ 0 , 1 , 0 , 1 , 0 ] )

from IPython . c o r e . d i s p l a y import d i s p l a y
d i s p l a y ( f i g )
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New verbs

def f u n c t i o n ( parameter1 , parameter2 ) :
”””Do t h i s ! ”””
# Code to do t h i s
return r e t u r n v a l u e
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Introduction to Python

Summary

Python is a general purpose programming language.

We can extend Python’s built-in functions by defining our own
functions (or by importing third party modules).

We can define complex behaviors through control statements
like “for”, “while”, and “if”.

We can use an interactive Python session to experiment with
new ideas and to explore data.

Saving interactive sessions is a good way to document our
computer “experiments”.

Likewise, we can use modules and scripts to document our
computer “protocols”.

Most of these statements are applicable to any programming
language (Perl, R, Bash, Java, C/C++, FORTRAN, ...)
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Homework: Make your own Fun

Write functions for these calculations, and test them on random
data:

1 Mean:

x̄ =

∑N
i xi
N

2 Standard deviation:

σx =

√∑N
i (xi − x̄)2

N − 1

3 Correlation coefficient (Pearson’s r):

r(x , y) =

∑
i (xi − x̄)(yi − ȳ)√∑

i (xi − x̄)2
√∑

i (yi − ȳ)2

Mark Voorhies Practical Bioinformatics


	Introduction to Python

