Practical Bioinformatics

Mark Voorhies

4/24/2017

Mark Voorhies Practical Bioinformatics

Introduction to Python
Resources

Course website:
e http://histo.ucsf.edu/BMS270/

Resources on the course website:
@ Syllabus

o Papers and code (for downloading before class)
o Slides and transcripts (available after class)

@ On-line textbooks (Dive into Python, Numerical Recipes, ...)

@ Programs for this course (Canopy, Cluster3, JavaTreeView, ...)

Mark Voorhies Practical Bioinformatics

Introduction to Python

Homework

e E-mail Mark your python sessions (.ipynb files) after class

e E-mail Mark any homework code/results before tomorrow's
class

Mark Voorhies Practical Bioinformatics

Introduction to Python
Homework

E-mail Mark your python sessions (.ipynb files) after class

E-mail Mark any homework code/results before tomorrow’s
class

@ It is fine to work together and to consult books, the web, etc.
(but let me know if you do)

It is fine to e-mail Mark questions

Don't blindly copy-paste other people’s code (you won't learn)

Mark Voorhies Practical Bioinformatics

Introduction to Python
Homework

e E-mail Mark your python sessions (.ipynb files) after class

e E-mail Mark any homework code/results before tomorrow's
class

@ It is fine to work together and to consult books, the web, etc.
(but let me know if you do)

@ It is fine to e-mail Mark questions
@ Don't blindly copy-paste other people’s code (you won't learn)

o If you get stuck, try working things out on paper first.

Mark Voorhies Practical Bioinformatics

Introduction to Python
Goals

At the end of this class, you should have the confidence to take on
the day to day tasks of "bioinformatics”.

Mark Voorhies Practical Bioinformatics

Introduction to Python
Goals

At the end of this class, you should have the confidence to take on
the day to day tasks of "bioinformatics”.

@ Analyzing data.

Mark Voorhies Practical Bioinformatics

Introduction to Python
Goals

At the end of this class, you should have the confidence to take on
the day to day tasks of "bioinformatics”.

@ Analyzing data.

e Writing standalone scripts.

Mark Voorhies Practical Bioinformatics

Introduction to Python
Goals

At the end of this class, you should have the confidence to take on
the day to day tasks of "bioinformatics”.

@ Analyzing data.
e Writing standalone scripts.

@ Shepherding data between analysis tools.

Mark Voorhies Practical Bioinformatics

Introduction to Python
Goals

At the end of this class, you should have the confidence to take on
the day to day tasks of "bioinformatics”.

@ Analyzing data.
@ Writing standalone scripts.
@ Shepherding data between analysis tools.

o Aggregating data from multiple sources.

Mark Voorhies Practical Bioinformatics

Introduction to Python
Goals

At the end of this class, you should have the confidence to take on
the day to day tasks of "bioinformatics”.

Analyzing data.

Writing standalone scripts.

Shepherding data between analysis tools.
Aggregating data from multiple sources.

Implementing new methods from the literature.

Mark Voorhies Practical Bioinformatics

Introduction to Python
Goals

At the end of this class, you should have the confidence to take on
the day to day tasks of "bioinformatics”.

@ Analyzing data.

@ Writing standalone scripts.

@ Shepherding data between analysis tools.

o Aggregating data from multiple sources.

@ Implementing new methods from the literature.

This is also good preparation for communicating with
computational collaborators.

Mark Voorhies Practical Bioinformatics

Introduction to Python

Course problems: expression and sequence analysis

2

Mark Voorhies Practical Bioinformatics

Introduction to Python

Course problems: expression and sequence analysis

2

Part 2. Genotype Part 1: Phenotype
(Sequence analysis) (Expression profiling)

Mark Voorhies Practical Bioinformatics

Introduction to Python
Course tool: Python

object
. orienteds” . interactive)
N
C++ Python R
\.

C Perl |[(Matlab)
compiled y proprietary
general
purpose

Mark Voorhies Practical Bioinformatics

Introduction to Python

Python distribution: Enthought Canopy

File Edit Tools Window Help

~

ENTHOUGHT Hi, welcome to Canopy!
Login to your Enthought accou

itor ereate one.

Editor Package Manager Doe Browser

Recent files
collections.py Restore previous session
test.py

Open an existing file [— 4

Mark Voorhies Practical Bioinformatics

Introduction to Python

Python distribution: Enthought

Edit_Tools window _Help

> 7 welcome to Canopy!
Y] .

Login

- §F Available Packages) isonpickle 0.4.0
G seraliting any arbirary bject oraph into JSON
& FreePackages 4
EE kernmagic 0.2.0
- comopypaciages | [s commane s s P FReE |

L@ community Packages

F keyring 0.9.2
-/ nstalled Packages 2, core v s o s el R CANGRY
¥ Updates 10 7 libogg 1.3.0
4 % * CANOPY
) History
=7 libtheora 1.1.1
L% * CANOPY
Fx libvpx 110
L% * CANOPY
5 libxml2 2.7.8
L N * CANOPY

4, matplotlib 1.2.0
) interactive 20 plotting library

D MKL 103
Inte{ Math Kernel Libray (runtime)
A, mock07.2

Em nese121
‘extends the test lnading and rumning Feztures of unittest

numpy 1.6.1
general-purpese array-pracessing and math library

63 packages installed A

1

Mark Voorhies

Introduction to Python

Python distribution: Enthought Canopy

Edit_Tools window _Help

AT

- §F Available Packages
& Free Packages
% canopyPackages
L Community Packages
- @ installed Packages

b * Updates 10

L bisory

119 packages available. 1 matches

7 welcome to Canopy!
CAN: Log'n

CANOPY

HDFS for Python (hpy) is a general-purpese Python interface ta the Hierarchical Data Format library,
version 5. HDF5 is a versatile, mature scientific software library designed for the fast, flexible storage
of enormous amounts of data. From a Python programmer's perspective, HDFS provides a robust way
to store data, organized by name in a tree-like Fashion. You can create datasets (arrays on disk)
hundreds of gigabytes in size, and perform random-access IO on desired sections. Datasets are
organized in a filesystem-like hierarchy using containers called "groups”, and accessed using the
tradional POSIX fpath/to/resource syntax.

Size: 827.23 kB

Version: 2.0.0

Build: 2

Dependencies:
hdfs 1.89
numpy 1.6.1

mds: 9571d1d37acd500¢734f0094049cd0ea

There are 4 versions of this package Show

Mark Voorhies

Introduction to Python

Python shell: ipython (jupyter) notebook

In [5]: np.random.seed(0)
ax = pylab.axes()
x = np.linspace(o, 10, 100)

ax.plot(x, np.sin(x) * np.exp(-0.1 * (x - 5) ** 2),
ax.plot(x, -np.cos(x) * np.exp(-6.1 * (x - 5) ** 2),

ax.set_title('check it out!')
ax.set xlabel ('x label’)
ax.set_ylabel('y label')

ax. legend (loc="loveer right)

ax.set xlim(e, 10)
ax.set_ylim(-1.0, 1.0)

#XKCDify the axes operates in-place

XKDify(ax, xaxis loc=0.0, yaxis loc=1.0,
xaxis_arrow='+-', yaxis arrow='+-",
expand_axes=True)

out[s

<matplotlib.axes. AxesSubplot at @x2fechdo>

CHECK |T OUT!

« LRGEC

= DAMPED SINE
~ DAMPED COSINE

Mark Voorhies

Introduction to Python

Anatomy of a Programming Language

f(x)\\ é\

functions

Mark Voorhies Practical Bioinformatics

Introduction to Python
Anatomy of a Programming Language

f(x)\\ é\

functions

data structures

Mark Voorhies Practical Bioinformatics

Introduction to Python

Anatomy of a Programming Language

f(x)\\ é\

functions

wh||e(a r_ stop) data structures

\LYeSP

p<- p|trans|ate(a
4

control statements

Mark Voorhies Practical Bioinformatics

Introduction to Python

Anatomy of a Programming Language

f(x)\\ é\

functions

wh||e(a r_ stop) data structures

\LYeSP

\L 3
objects

control statements

Mark Voorhies Practical Bioinformatics

Introduction to Python

Talking to Python: Nouns

This is a comment
This is an int (integer)

42

This is a float (rational number)

4.2

These are all strings (sequences of characters)
"ATGC

"Mendel 's Laws”

""">CAA36839.1 Calmodulin
MADQLTEEQIAEFKEAFSLFDKDGDGTITTKELGTVMRSLGQNPTEAEL
QDMINEVDADDLPGNGTIDFPEFL TMMARKMKD TDSEEEIREAFRVFDK
DGNGYISAAELRHVMTNLGEKLTDEEVDEMIREADIDGDGQVNYEEFVQ
MMTAK" " "

Mark Voorhies Practical Bioinformatics

Introduction to Python
Python as a Calculator

Addition

1+1

Subtraction

2-3

Multiplication

3x%5

Division (gotcha: be sure to use floats)
5/3.0

Exponentiation

2%%3

Order of operations
2%3 —(3+4)x%2

Mark Voorhies Practical Bioinformatics

Introduction to Python
Remembering objects

Use a single = for assignment:
TLC = "GATACA”"
YFG = "CTATGT”
MFG = "CTATGT"

A name can occur on both sides of an assignment:
codon_position = 1857

codon_position = codon_position + 3

Short—hand for common updates:
codon 4= 3

weight —= 10

expression x= 2

CFU /= 10.0

Mark Voorhies Practical Bioinformatics

Introduction to Python
Python as a Calculator

@ Calculate the molarity of a 70mer oligonucleotide with
Aszeo = .03 using the formula from Maniatis:

.02A560
= 1
330L (1)

@ Calculate the T, of a QuickChange mutagenesis primer with
length 25bp (L = 25), 13 GC bases (ngc = 13), and 2
mismatches to the template (npp = 2) using the formula
from Stratagene:

Alnge —1 — 67
T, =815+ —-16C OS"MM 675 (2)

Mark Voorhies Practical Bioinformatics

Introduction to Python
Displaying values with print

Use print to show the value of an object
message = " Hello, world”

print (message)

Or several objects:

print (1,2,3,4)

Older versions of Python use a

different print syntax

print "Hello, world”

Mark Voorhies Practical Bioinformatics

Introduction to Python
Comparing objects

Use double = for comparison:
YFG = MFG

Other comparison operators:
Not equal:

TLC !'= MFG

Less than:

3 <5

Greater than, or equal to:
7>=06

Mark Voorhies Practical Bioinformatics

Introduction to Python
Making decisions

if (YFG = MFG):
print "Synonyms!”

if(protein_length < 60):

print "Probably too short to fold.”
elif (protein_length > 10000):

print "What is this, titin?”
else:

print "Okay, this looks reasonable.”

Mark Voorhies Practical Bioinformatics

Introduction to Python
Collections of objects

A list is a mutable sequence of objects
mylist = [1, 3.1415926535, "GATACA", 4, 5]
Indexing

mylist [0] =1

mylist[—-1] = 5

Assigning by index

mylist [0] = "ATG"

Slicing

mylist [1:3] = [3.1415926535, "GATACA" |
mylist [:2] = [1, 3.1415926535]

mylist [3:] = [4,5]

Assigning a second name to a list
also_mylist = mylist

Assigning to a copy of a list
my_other_list = mylist [:]

Mark Voorhies Practical Bioinformatics

Introduction to Python

Repeating yourself: iteration

A for loop iterates through a list one element
at a time:

for i in [1,2,3,4,5]:
print i, ixx2

A while loop iterates for as long as a condition
is true:
population =1
while (population < 1e5):
print population
population x= 2

Mark Voorhies Practical Bioinformatics

Introduction to Python
Verb that noun!

return_value = function(parameter, ...)
“Python, do function to parameter”

Built—in functions

Generate a list from 0 to n—1
a = range(5)

Sum over an iterable object
sum(a)

Find the length of an object
len(a)

Mark Voorhies Practical Bioinformatics

Introduction to Python
Verb that noun!

return_value = function(parameter, ...)
“Python, do function to parameter’

Importing functions from modules
import numpy

numpy.sqrt (9)

import matplotlib. pyplot as plt

fig = plt.figure()

plt.plot([1,2,3,4,5],
[0,1,0,1,0])

from IPython.core.display

import display
display(fig)

Mark Voorhies Practical Bioinformatics

Introduction to Python

New verbs

def function(parameterl, parameter2):
"""Do this!"""
Code to do this
return return_value

Mark Voorhies Practical Bioinformatics

Introduction to Python

Summary

@ Python is a general purpose programming language.

Mark Voorhies Practical Bioinformatics

Introduction to Python
Summary

@ Python is a general purpose programming language.

@ We can extend Python's built-in functions by defining our own
functions (or by importing third party modules).

Mark Voorhies Practical Bioinformatics

Introduction to Python
Summary

@ Python is a general purpose programming language.

@ We can extend Python's built-in functions by defining our own
functions (or by importing third party modules).

@ We can define complex behaviors through control statements
like “for", “while", and “if".

Mark Voorhies Practical Bioinformatics

Introduction to Python
Summary

@ Python is a general purpose programming language.

@ We can extend Python's built-in functions by defining our own
functions (or by importing third party modules).

@ We can define complex behaviors through control statements
like “for", “while", and “if".

@ We can use an interactive Python session to experiment with
new ideas and to explore data.

Mark Voorhies Practical Bioinformatics

Introduction to Python
Summary

@ Python is a general purpose programming language.

@ We can extend Python's built-in functions by defining our own
functions (or by importing third party modules).

@ We can define complex behaviors through control statements
like “for", “while", and “if".

@ We can use an interactive Python session to experiment with
new ideas and to explore data.

@ Saving interactive sessions is a good way to document our
computer “experiments”.

Mark Voorhies Practical Bioinformatics

Introduction to Python

Summary

@ Python is a general purpose programming language.

@ We can extend Python's built-in functions by defining our own
functions (or by importing third party modules).

@ We can define complex behaviors through control statements
like “for", “while", and “if".

@ We can use an interactive Python session to experiment with
new ideas and to explore data.

@ Saving interactive sessions is a good way to document our
computer “experiments”.

o Likewise, we can use modules and scripts to document our
computer “protocols”.

Mark Voorhies Practical Bioinformatics

Introduction to Python
Summary

@ Python is a general purpose programming language.

@ We can extend Python's built-in functions by defining our own
functions (or by importing third party modules).

@ We can define complex behaviors through control statements
like “for", “while", and “if".

@ We can use an interactive Python session to experiment with
new ideas and to explore data.

@ Saving interactive sessions is a good way to document our
computer “experiments”.

o Likewise, we can use modules and scripts to document our
computer “protocols”.

@ Most of these statements are applicable to any programming
language (Perl, R, Bash, Java, C/C++, FORTRAN, ...)

Mark Voorhies Practical Bioinformatics

Introduction to Python
Homework: Make your own Fun

Write functions for these calculations, and test them on random
data:

Q@ Mean:

@ Standard deviation:

Nix — %)2
N O
N—-1
@ Correlation coefficient (Pearson's r):

r(ij): Zi(Xi_)_()(yi_)_/)
Vil = X2/ 2y — 7))

Mark Voorhies Practical Bioinformatics

	Introduction to Python

