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PAM (Dayhoff) and BLOSUM matrices

@ PAM1 matrix originally calculated from manual alignments of
highly conserved sequences (myoglobin, cytochrome C, etc.)
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PAM (Dayhoff) and BLOSUM matrices

@ PAM1 matrix originally calculated from manual alignments of
highly conserved sequences (myoglobin, cytochrome C, etc.)

@ We can think of a PAM matrix as evolving a sequence by one
unit of time.

@ If evolution is uniform over time, then PAM matrices for larger
evolutionary steps can be generated by multiplying PAM1 by
itself (so, higher numbered PAM matrices represent greater
evolutionary distances).

@ The BLOSUM matrices were determined from automatically
generated ungapped alignments. Higher numbered BLOSUM
matrices correspond to smaller evolutionary distances.
BLOSUMBG? is the default matrix for BLAST.
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Motivation for scoring matrices

Frequency of residue i:
Pi
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Frequency of residue / aligned to residue j:
qij
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Motivation for scoring matrices

Frequency of residue i:
Pi

Frequency of residue / aligned to residue j:

qij
Expected frequency if i and j are independent:
pip;j
Ratio of observed to expected frequency:
qij
piPj
Log odds (LOD) score:

s(7,j) = log ~L-

pip;
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BLOSUM45 in alphabetical order
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Clustering amino acids on log odds scores

import networkx as nx
try:
import Pycluster
except ImportError:
import Bio.Cluster as Pycluster

class ScoreCluster:
def __init__(self, S, alpha_.aa = "ACDEFGHIKLMNPQRSTVWY" ):
""" |Initialize from numpy array of scaled log odds scores.
(x,y) = S.shape
assert(x = y = len(alpha_aa))

# Interpret the largest score as a distance of zero

D = max(S.reshape(x*%2))—S

# Maximum—Ilinkage clustering , with a user—supplied distance matrix
tree = Pycluster.treecluster(distancematrix = D, method = "m")

# Use NetworkX to read out the amino—acids in clustered order
G = nx.DiGraph ()
for (n,i) in enumerate(tree):
for j in (i.left, i.right):
G.add_edge(—(n+1),j)

self.ordering = [i for i in nx.dfs_preorder(G, —len(tree)) if(i >= 0)]
self.names = "" . join(alpha_aa[i] for i in self.ordering)
self.C = self.permute(S)

def permute(self, S):
""" Given square matrix S in alphabetical order, return rows and columns
of S permuted to match the clustered order.”"”
return array ([[S[i][j] for j in self.ordering] for i in self.ordering])
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BLOSUM45 — maximum linkage clustering

"n<=EwnHdPrPn_<E-rOpUIAMUIUZIO

QHNDEKRPGLMV I CATSWYF

Mark Voorhies Heuristic Approaches



BLOSUM®62 with BLOSUM45 ordering
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BLOSUMBS80 with BLOSUM45 ordering

"n<=EwnHdPrPn_<E-rOpUIAMUIUZIO

QHNDEKRPGLMV I CATSWYF
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Smith-Waterman

The implementation of local alignment is the same as for global
alignment, with a few changes to the rules:

o Initialize edges to 0 (no penalty for starting in the middle of a
sequence)

@ The maximum score is never less than 0, and no pointer is
recorded unless the score is greater than O (note that this
implies negative scores for gaps and bad matches)

@ The trace-back starts from the highest score in the matrix and
ends at a score of O (local, rather than global, alignment)

Because the naive implementation is essentially the same, the time
and space requirements are also the same.
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Basic Local Alignment Search Tool

Why BLAST?

@ Fast, heuristic approximation to a full Smith-Waterman local
alignment

@ Developed with a statistical framework to calculate expected
number of false positive hits.

@ Heuristics biased towards “biologically relevant” hits.
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BLAST: A quick overview

N\
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BLAST: Seed from exact word hits

N\

N\
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BLAST: Myers and Miller local alignment around seed pairs
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BLAST: High Scoring Pairs (HSPs)

N




Karlin-Altschul Statistics

E = kmne™°
e E: Expected number of “random” hits in a database of this
size scoring at least S.
@ S: HSP score
e m: Query length
o n: Database size
@ k: Correction for similar, overlapping hits
@ \: normalization factor for scoring matrix
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Karlin-Altschul Statistics

E = kmne *°

E: Expected number of “random” hits in a database of this
size scoring at least S.

S: HSP score

m: Query length

n: Database size

k: Correction for similar, overlapping hits

@ \: normalization factor for scoring matrix

A variant of this formula is used to generate sum probabilities for
combined HSPs.

p:l—e_E

(If you care about the difference between E and p, you're already
in trouble)
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0" order Markov Model
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1°t order Markov Model
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What are Markov Models good for?

@ Background sequence composition

@ Spam
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Hidden Markov Models

e 5'UTR Intron Start
./ Intergenic Eio( Intron\\
< \__ 3.'UTR’z \ Intron Stop
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Hidden Markov Models

e 5'UTR \/rlntron Start

A " Intergenic Exon Intron\\
\\/ \__ '3.'UTR’z \ Intron Stop
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Hidden Markov Models
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Hidden Markov Models
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Hidden Markov Model




The Viterbi algorithm: Alignment

A_—
(\/.Q

A >4H4>N0>»4H>0
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The Viterbi algorithm: Alignment
CH

. @ Dynamic programming, like
—

Smith-Waterman

2 \i/ @ Sums best log probabilities
of emissions and transitions

T \L (i.e., multiplying

A \L independent probabilities)

f\ - o Result is most likely

74 - annotation of the target
; \L with hidden states
1=
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The Forward algorithm: Net probability

@ Probability-weighted sum
—) over all possible paths

)

. @ Simple modification of
— Q Viterbi (although summing
probabilities means we have
to be more careful about
rounding error)

@ Result is the probability that
the observed sequence is
explained by the model

@ In practice, this probability
is compared to that of a null
model (e.g., random
genomic sequence)

>4 >N>»4H>0
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Training an HMM

o If we have a set of sequences
with known hidden states
(e.g., from experiment),
then we can calculate the
emission and transition

G)I O
I I [I @ probabilities directly
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Training an HMM

o If we have a set of sequences
with known hidden states
(e.g., from experiment),
then we can calculate the

CH—
. .@ emission and transition
probabilities directly
@ Otherwise, they can be
iteratively fit to a set of
unlabeled sequences that are
known to be true matches
to the model
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Training an HMM

o If we have a set of sequences
with known hidden states

G‘ — (e.g., from experiment),

. then we can calculate the
6 Q emission and transition

probabilities directly

@ Otherwise, they can be
iteratively fit to a set of
unlabeled sequences that are
known to be true matches
to the model

@ The most common fitting
procedure is the
Baum-Welch algorithm, a
special case of expectation
maximization (EM)
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Profile Alignments: Plan 7
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(Image from Sean Eddy, PLoS Comp. Biol. 4:¢1000069)

Mark Voorhies Heuristic Approaches



Profile Alignments: Plan 7 (from Outer Space)

(Image from Sean Eddy, PLoS Comp. Biol. 4:¢1000069)
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Rigging Plan 7 for Multi-Hit Alignment

(Image from Sean Eddy, PLoS Comp. Biol. 4:¢1000069)



HMMer3 speeds

on shuffled target sequences on real target sequences
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Eddy, PLoS Comp. Biol. 7:¢1002195
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HMMer3 sensitivity and specificity
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Eddy, PLoS Comp. Biol. 7:¢1002195
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Stochastic Context Free Grammars

@ <~
€S (&5

@ Can emit from both sides — base pairs

@ Can duplicate emitter — bifurcations

Mark Voorhies Heuristic Approaches



INFERNAL /Rfam

input multiple alignment: example structure: UU

C.GGm
[stucture] . : : <<= >- >>; <<mmm. B> A
humen . AAGACUUCGGAUCUGGCH . .Bcc. AU
mouse aUACACUUCGGAUG - CACH. .BUGa T
orc . AGGUCUUC - GCACGGGCA9ECA cluc A GGG
i 5 1 b el
ROOT
quide tree: § m:;t < \@o
BIF__ 4] &\)
BEGL 5 [BEGR 15
4 ATP _6p14 15 ATL 16
5 ATP _7p13 16 A 17p27
ATR 12 174MATP 18) 26
64 MATP 11 18<[MATE9]
7qMA 19 (HIATRIZ0) 25
8MA 21< AT
oA 22<EIATINS2]
10 MAT 23<RIATEES]
[END END 24

Modified from the INFERNAL User Guide — Nawrocki, Kolbe, and Eddy
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INFERNAL /Rfam

input multiple alignment: example structure: UU

C.GGm
[stucture] . : : <<= >- >>; <<mmm. B> A
humen . AAGACUUCGGAUCUGGES . i [ AU
mouse aUACACUUCGGAUG - CACH. .BUGa T
orc . AGGUCUUC - GCACGGGCA9ECA cluc A GGG
H 5 o I
LC.La
ROOT
. 2 MATL 2
quide tree: WAL 3] AG Q
BIF__ 4] oo
BEGL 5 BEGR 15 &@)
4 ATP _6p14 15 ATL 16
5 ATP _7p13 16 A 17p27
ATR _8p12  174MATP 18)26
64 MATP 11 18<[MATE9]
7qMA 10QEIATRRZ0) 25
8MA 21< AT
oA 22<EIATINS2]
10 AT 23 NIATEES]
[END END 24

Modified from the INFERNAL User Guide — Nawrocki, Kolbe, and Eddy
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INFERNAL /Rfam

input multiple alignment: example structure: UU

e
[stucture] . : : <<= >- >>: <<E . B> A
humen . AAGACUUCGGAUCUGGE Ecc AU
mouse aUACACUUCGGAUG - CAC .BUGa T
orc . AGGUCUUC - GCACGGGCA9ECA cluc A S
H 5 o I " A
ROOT
. 2 MATL 2
quide tree: WAL 3] AG “
BIF__ 4] oo
BEGL 5 BEGR 15 &\‘8‘) Q@@
4 ATP _6p14 15 ATL 16
5¢ ATP _7p13 16 A 17p27 &\3.)
ATR _8p12  174MATP 18)26
64 MATP 11 18<[MATE9]
7qMA 10QEIATRRZ0) 25
8MA 21< AT
oA 22<EIATINS2]
10 AT 23 NIATEES]
[END END 24

Modified from the INFERNAL User Guide — Nawrocki, Kolbe, and Eddy

Mark Voorhies uristic Approaches



INFERNAL /Rfam

input multiple alignment: example structure: UU ('Gm

[structure] @@ <<< o >->>: <<pmm. B> C'GA
humen . AAGACUUCGGAUCUGGES . @gcc. AU
mouse aUACACUUCGGAUG - CACH. UGa T

orc . AGGUCUUC - GCACGGGCA9ECA cluc A GGG
H 5 o I 2 &e
ROOT
. 2 MATL 2
ide tree:
guide tree: 3 A

BEGL 5
4{MATP_6
5 ATP 7
ATR
64 MATP
7MA
8 MA
9(MA
10 MAT
[END END 24

Modified from the INFERNAL User Guide — Nawrocki, Kolbe, and Eddy
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INFERNAL /Rfam

input multiple alignment: example structure: UU ('Gm
[stucture] . : : <<= >- >>; <<mmm. B> C:Gy
human . AAGACUUCGGAUCUGGCE . .@CcC. sA-U
mouse aUACACUUCGGAUG - CACE. UGa A g
orc . AGGUCUUC - GCACGGGCAGBCA cliuc . oA 8cG
i 5 10 I 30 Y] EE CA
¢
ROOT
. 2{VATL 2
guide tree: WAL 3] A
BIF__ 4]
BEGL 5 [BEGR 15
4{MATP_6p14 15 MATL 16
sqUATP_7p13 164 MATP 17)p27
ATR_8p12  174MATP 18) 26
64 MATP 11 18<[MATE9]
7{MA 19 (HIATRIZ0) 25
8(MA 21<IMATIRN
o(MA 22<EIATINS2]
10 AT 23<NIATIgS]
[END END 24

Modified from the INFERNAL User Guide — Nawrocki, Kolbe, and Eddy

Mark Voorhies uristic Approaches



INFERNAL /Rfam

input multiple alignment: example structure: UU LGm
[stucture] . : : <<= >- >>; <<mmm. B> “oa
human . AAGACUUCGGAUCUGGCE . .@cc. AU
mouse aUACACUUCGGAUG - CACH. .BUGa A g
orc . AGGUCUUC - GCACGGGCAGBCA cliuc . A GGG
1 5 10 15 20 %5 2 CCChp
£0C
RGOT
quide tree: 2 MATL_ 2 A
3(MATL 3] G
BIF__ 4] G
- U Ao\
BEGL 5 BEGR 15
4{MATP_6p14
sqMATP_7p13
ATR 812
6{MATP_9)p11
7R
sMA
9(MA
10{MAT
[END END 24

Modified from the INFERNAL User Guide — Nawrocki, Kolbe, and Eddy
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Homework

o Keep working on your dynamic programming code.
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