Heuristic Approaches

Mark Voorhies

5/5/2017

http://www.xkcd.com/287/

MY HOBBY:
EMBEDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS
PAM (Dayhoff) and BLOSUM matrices

- PAM1 matrix originally calculated from manual alignments of highly conserved sequences (myoglobin, cytochrome C, etc.)
- PAM1 matrix originally calculated from manual alignments of highly conserved sequences (myoglobin, cytochrome C, etc.)
- We can think of a PAM matrix as evolving a sequence by one unit of time.

The BLOSUM matrices were determined from automatically generated ungapped alignments. Higher numbered BLOSUM matrices correspond to smaller evolutionary distances. BLOSUM62 is the default matrix for BLAST.
PAM (Dayhoff) and BLOSUM matrices

- PAM1 matrix originally calculated from manual alignments of highly conserved sequences (myoglobin, cytochrome C, etc.)
- We can think of a PAM matrix as evolving a sequence by one unit of time.
- If evolution is uniform over time, then PAM matrices for larger evolutionary steps can be generated by multiplying PAM1 by itself (so, higher numbered PAM matrices represent greater evolutionary distances).

BLOSUM matrices were determined from automatically generated ungapped alignments. Higher numbered BLOSUM matrices correspond to smaller evolutionary distances. BLOSUM62 is the default matrix for BLAST.
PAM (Dayhoff) and BLOSUM matrices

- PAM1 matrix originally calculated from manual alignments of highly conserved sequences (myoglobin, cytochrome C, etc.).
- We can think of a PAM matrix as evolving a sequence by one unit of time.
- If evolution is uniform over time, then PAM matrices for larger evolutionary steps can be generated by multiplying PAM1 by itself (so, higher numbered PAM matrices represent greater evolutionary distances).
- The BLOSUM matrices were determined from automatically generated ungapped alignments. Higher numbered BLOSUM matrices correspond to smaller evolutionary distances. BLOSUM62 is the default matrix for BLAST.
Motivation for scoring matrices

Frequency of residue i:

p_i
Motivation for scoring matrices

Frequency of residue i:

\[p_i \]

Frequency of residue i aligned to residue j:

\[q_{ij} \]
Motivation for scoring matrices

Frequency of residue i:

p_i

Frequency of residue i aligned to residue j:

q_{ij}

Expected frequency if i and j are independent:

p_ip_j
Motivation for scoring matrices

Frequency of residue i:

$$p_i$$

Frequency of residue i aligned to residue j:

$$q_{ij}$$

Expected frequency if i and j are independent:

$$p_i p_j$$

Ratio of observed to expected frequency:

$$\frac{q_{ij}}{p_i p_j}$$

Log odds (LOD) score:

$$s(i, j) = \log q_{ij}$$
Motivation for scoring matrices

Frequency of residue i:

$$p_i$$

Frequency of residue i aligned to residue j:

$$q_{ij}$$

Expected frequency if i and j are independent:

$$p_i p_j$$

Ratio of observed to expected frequency:

$$\frac{q_{ij}}{p_i p_j}$$

Log odds (LOD) score:

$$s(i, j) = \log \frac{q_{ij}}{p_i p_j}$$
BLOSUM45 in alphabetical order
import networkx as nx

try:
 import Pycluster
except ImportError:
 import Bio.Cluster as Pycluster

class ScoreCluster:
 def __init__(self, S, alpha_aa = "ACDEFGHIKLMNPQRSTVWY"):
 """Initialize from numpy array of scaled log odds scores."""
 (x,y) = S.shape
 assert(x == y == len(alpha_aa))

 # Interpret the largest score as a distance of zero
 D = max(S.reshape(x**2)) - S

 # Maximum-linkage clustering, with a user-supplied distance matrix
 tree = Pycluster.treecluster(distancematrix = D, method = "m")

 # Use NetworkX to read out the amino-acids in clustered order
 G = nx.DiGraph()
 for (n,i) in enumerate(tree):
 for j in (i.left, i.right):
 G.add_edge(-(n+1),j)

 self.ordering = [i for i in nx.dfs_preorder(G, -len(tree)) if(i >= 0)]
 self.names = ".".join(alpha_aa[i] for i in self.ordering)
 self.C = self.permute(S)

 def permute(self, S):
 """Given square matrix S in alphabetical order, return rows and columns of S permuted to match the clustered order."""
 return array([[S[i][j] for j in self.ordering] for i in self.ordering])
BLOSUM45 – maximum linkage clustering

Mark Voorhies Heuristic Approaches
BLOSUM62 with BLOSUM45 ordering
BLOSUM80 with BLOSUM45 ordering
The implementation of local alignment is the same as for global alignment, with a few changes to the rules:

- Initialize edges to 0 (no penalty for starting in the middle of a sequence)
- The maximum score is never less than 0, and no pointer is recorded unless the score is greater than 0 (note that this implies negative scores for gaps and bad matches)
- The trace-back starts from the highest score in the matrix and ends at a score of 0 (local, rather than global, alignment)

Because the naive implementation is essentially the same, the time and space requirements are also the same.
Smith-Waterman

Heuristic Approaches
Why BLAST?

- Fast, heuristic approximation to a full Smith-Waterman local alignment
- Developed with a statistical framework to calculate expected number of false positive hits.
- Heuristics biased towards “biologically relevant” hits.
BLAST: A quick overview
BLAST: Seed from exact word hits
BLAST: Myers and Miller local alignment around seed pairs
Karlin-Altschul Statistics

\[E = kmne^{-\lambda S} \]

- **E**: Expected number of “random” hits in a database of this size scoring at least \(S \).
- **S**: HSP score
- **m**: Query length
- **n**: Database size
- **k**: Correction for similar, overlapping hits
- **\(\lambda \)**: Normalization factor for scoring matrix
Karlin-Altschul Statistics

\[E = kmne^{-\lambda S} \]

- \(E \): Expected number of “random” hits in a database of this size scoring \textit{at least} \(S \).
- \(S \): HSP score
- \(m \): Query length
- \(n \): Database size
- \(k \): Correction for similar, overlapping hits
- \(\lambda \): Normalization factor for scoring matrix

A variant of this formula is used to generate sum probabilities for combined HSPs.
Karlin-Altschul Statistics

\[E = kmne^{-\lambda S} \]

- **\(E \)**: Expected number of “random” hits in a database of this size scoring at least \(S \).
- **\(S \)**: HSP score
- **\(m \)**: Query length
- **\(n \)**: Database size
- **\(k \)**: Correction for similar, overlapping hits
- **\(\lambda \)**: Normalization factor for scoring matrix

A variant of this formula is used to generate sum probabilities for combined HSPs.

\[p = 1 - e^{-E} \]
Karlin-Altschul Statistics

\[E = kmne^{-\lambda S} \]

- **E**: Expected number of “random” hits in a database of this size scoring at least \(S \).
- **S**: HSP score
- **m**: Query length
- **n**: Database size
- **k**: Correction for similar, overlapping hits
- **\(\lambda \)**: Normalization factor for scoring matrix

A variant of this formula is used to generate sum probabilities for combined HSPs.

\[p = 1 - e^{-E} \]

(If you care about the difference between \(E \) and \(p \), you’re already in trouble)
0th order Markov Model

A → A → A → A
T → T → T → T
G → G → G → G
C → C → C → C
1st order Markov Model
1st order Markov Model

Mark Voorhies

Heuristic Approaches
1st order Markov Model

\[\text{Graph of Markov Model} \]

- Node labels: A, T, G, C
- Transitions: A \rightarrow A \rightarrow A \rightarrow A
- States: A, T, G, C

Mark Voorhies
Heuristic Approaches
What are Markov Models good for?

- Background sequence composition
- Spam
Hidden Markov Models

Heuristic Approaches
Hidden Markov Models

Heuristic Approaches
Hidden Markov Models

Heuristic Approaches
Hidden Markov Models

Mark Voorhies

Heuristic Approaches
Hidden Markov Models

Mark Voorhies

Heuristic Approaches
Hidden Markov Model

Mark Voorhies | Heuristic Approaches
The Viterbi algorithm: Alignment
The Viterbi algorithm: Alignment

- Dynamic programming, like Smith-Waterman
- Sums best log probabilities of emissions and transitions (i.e., multiplying independent probabilities)
- Result is most likely annotation of the target with hidden states
The Forward algorithm: Net probability

- Probability-weighted sum over all possible paths
- Simple modification of Viterbi (although *summing* probabilities means we have to be more careful about rounding error)
- Result is the probability that the observed sequence is explained by the model
- In practice, this probability is compared to that of a null model (e.g., random genomic sequence)
If we have a set of sequences with known hidden states (e.g., from experiment), then we can calculate the emission and transition probabilities directly.
Training an HMM

If we have a set of sequences with known hidden states (e.g., from experiment), then we can calculate the emission and transition probabilities directly.

Otherwise, they can be iteratively fit to a set of unlabeled sequences that are known to be true matches to the model.
Training an HMM

- If we have a set of sequences with known hidden states (e.g., from experiment), then we can calculate the emission and transition probabilities directly.
- Otherwise, they can be iteratively fit to a set of unlabeled sequences that are known to be true matches to the model.
- The most common fitting procedure is the Baum-Welch algorithm, a special case of expectation maximization (EM).
Profile Alignments: Plan 7

(Image from Sean Eddy, PLoS Comp. Biol. 4:e1000069)
Profile Alignments: Plan 7 (from Outer Space)

(Image from Sean Eddy, PLoS Comp. Biol. 4:e1000069)
Rigging Plan 7 for Multi-Hit Alignment

(Image from Sean Eddy, PLoS Comp. Biol. 4:e1000069)
HMMer3 speeds

Eddy, PLoS Comp. Biol. 7:e1002195
HMMer3 sensitivity and specificity

Eddy, PLoS Comp. Biol. 7:e1002195
- Can emit from both sides → base pairs
- Can duplicate emitter → bifurcations
Modified from the INFERNAL User Guide – Nawrocki, Kolbe, and Eddy
Heuristic Approaches
Heuristic Approaches

Modified from the INFERNAL User Guide – Nawrocki, Kolbe, and Eddy
Modified from the INFERNAL User Guide – Nawrocki, Kolbe, and Eddy

Mark Voorhies | Heuristic Approaches
Modified from the INFERNAL User Guide – Nawrocki, Kolbe, and Eddy
Modified from the INFERNAL User Guide – Nawrocki, Kolbe, and Eddy

Heuristic Approaches
Homework

- Keep working on your dynamic programming code.