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PAM (Dayhoff) and BLOSUM matrices

PAM1 matrix originally calculated from manual alignments of
highly conserved sequences (myoglobin, cytochrome C, etc.)

We can think of a PAM matrix as evolving a sequence by one
unit of time.

If evolution is uniform over time, then PAM matrices for larger
evolutionary steps can be generated by multiplying PAM1 by
itself (so, higher numbered PAM matrices represent greater
evolutionary distances).

The BLOSUM matrices were determined from automatically
generated ungapped alignments. Higher numbered BLOSUM
matrices correspond to smaller evolutionary distances.
BLOSUM62 is the default matrix for BLAST.
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Motivation for scoring matrices

Frequency of residue i :
pi

Frequency of residue i aligned to residue j :

qij

Expected frequency if i and j are independent:

pipj

Ratio of observed to expected frequency:

qij
pipj

Log odds (LOD) score:

s(i , j) = log
qij
pipj
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BLOSUM45 in alphabetical order
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Clustering amino acids on log odds scores

import networkx as nx
t r y :

import P y c l u s t e r
except I m p o r t E r r o r :

import Bio . C l u s t e r as P y c l u s t e r

c l a s s S c o r e C l u s t e r :
def i n i t ( s e l f , S , a l p h a a a = ”ACDEFGHIKLMNPQRSTVWY” ) :

””” I n i t i a l i z e from numpy a r r a y o f s c a l e d l o g odds s c o r e s . ”””
( x , y ) = S . shape
a s s e r t ( x == y == l e n ( a l p h a a a ) )

# I n t e r p r e t the l a r g e s t s c o r e as a d i s t a n c e o f z e r o
D = max( S . r e s h a p e ( x∗∗2))−S
# Maximum−l i n k a g e c l u s t e r i n g , w i th a use r−s u p p l i e d d i s t a n c e mat r i x
t r e e = P y c l u s t e r . t r e e c l u s t e r ( d i s t a n c e m a t r i x = D, method = ”m” )

# Use NetworkX to read out the amino−a c i d s i n c l u s t e r e d o r d e r
G = nx . DiGraph ( )
f o r ( n , i ) i n enumerate ( t r e e ) :

f o r j i n ( i . l e f t , i . r i g h t ) :
G . add edge (−(n+1) , j )

s e l f . o r d e r i n g = [ i f o r i i n nx . d f s p r e o r d e r (G, −l e n ( t r e e ) ) i f ( i >= 0 ) ]
s e l f . names = ”” . j o i n ( a l p h a a a [ i ] f o r i i n s e l f . o r d e r i n g )
s e l f . C = s e l f . permute ( S )

def permute ( s e l f , S ) :
””” Given squa r e mat r i x S i n a l p h a b e t i c a l o rde r , r e t u r n rows and columns
o f S permuted to match the c l u s t e r e d o r d e r . ”””
r e t u r n a r r a y ( [ [ S [ i ] [ j ] f o r j i n s e l f . o r d e r i n g ] f o r i i n s e l f . o r d e r i n g ] )
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BLOSUM45 – maximum linkage clustering
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BLOSUM62 with BLOSUM45 ordering

Mark Voorhies Heuristic Approaches



BLOSUM80 with BLOSUM45 ordering
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Smith-Waterman

The implementation of local alignment is the same as for global
alignment, with a few changes to the rules:

Initialize edges to 0 (no penalty for starting in the middle of a
sequence)

The maximum score is never less than 0, and no pointer is
recorded unless the score is greater than 0 (note that this
implies negative scores for gaps and bad matches)

The trace-back starts from the highest score in the matrix and
ends at a score of 0 (local, rather than global, alignment)

Because the naive implementation is essentially the same, the time
and space requirements are also the same.
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Smith-Waterman

A G C G G T A

G

A

G

C

G

G
A

0 0 0 0 0 0 0 0

0

0

0

0

0

0

0

0 1 0 0 1 0 0

1 0 0 0 0 0 1

0 2 1 1 1 0 0

0 1 3 2 1 0 0

0 0 2 4 3 2 1

0 1 31 5 4 3

1 0 0 2 4 4 5
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Basic Local Alignment Search Tool

Why BLAST?

Fast, heuristic approximation to a full Smith-Waterman local
alignment

Developed with a statistical framework to calculate expected
number of false positive hits.

Heuristics biased towards “biologically relevant” hits.
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BLAST: A quick overview
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BLAST: Seed from exact word hits

Mark Voorhies Heuristic Approaches



BLAST: Myers and Miller local alignment around seed pairs
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BLAST: High Scoring Pairs (HSPs)
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Karlin-Altschul Statistics

E = kmne−λS

E : Expected number of “random” hits in a database of this
size scoring at least S.

S : HSP score

m: Query length

n: Database size

k: Correction for similar, overlapping hits

λ: normalization factor for scoring matrix

A variant of this formula is used to generate sum probabilities for
combined HSPs.

p = 1− e−E

(If you care about the difference between E and p, you’re already
in trouble)
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0th order Markov Model
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1st order Markov Model
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1st order Markov Model
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1st order Markov Model
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What are Markov Models good for?

Background sequence composition

Spam
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Hidden Markov Models
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Hidden Markov Model
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The Viterbi algorithm: Alignment
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The Viterbi algorithm: Alignment

Dynamic programming, like
Smith-Waterman

Sums best log probabilities
of emissions and transitions
(i.e., multiplying
independent probabilities)

Result is most likely
annotation of the target
with hidden states
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The Forward algorithm: Net probability

Probability-weighted sum
over all possible paths

Simple modification of
Viterbi (although summing
probabilities means we have
to be more careful about
rounding error)

Result is the probability that
the observed sequence is
explained by the model

In practice, this probability
is compared to that of a null
model (e.g., random
genomic sequence)
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Training an HMM

If we have a set of sequences
with known hidden states
(e.g., from experiment),
then we can calculate the
emission and transition
probabilities directly

Otherwise, they can be
iteratively fit to a set of
unlabeled sequences that are
known to be true matches
to the model

The most common fitting
procedure is the
Baum-Welch algorithm, a
special case of expectation
maximization (EM)

Mark Voorhies Heuristic Approaches



Training an HMM

If we have a set of sequences
with known hidden states
(e.g., from experiment),
then we can calculate the
emission and transition
probabilities directly

Otherwise, they can be
iteratively fit to a set of
unlabeled sequences that are
known to be true matches
to the model

The most common fitting
procedure is the
Baum-Welch algorithm, a
special case of expectation
maximization (EM)

Mark Voorhies Heuristic Approaches



Training an HMM

If we have a set of sequences
with known hidden states
(e.g., from experiment),
then we can calculate the
emission and transition
probabilities directly

Otherwise, they can be
iteratively fit to a set of
unlabeled sequences that are
known to be true matches
to the model

The most common fitting
procedure is the
Baum-Welch algorithm, a
special case of expectation
maximization (EM)

Mark Voorhies Heuristic Approaches



Profile Alignments: Plan 7

(Image from Sean Eddy, PLoS Comp. Biol. 4:e1000069)

Mark Voorhies Heuristic Approaches



Profile Alignments: Plan 7 (from Outer Space)

(Image from Sean Eddy, PLoS Comp. Biol. 4:e1000069)
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Rigging Plan 7 for Multi-Hit Alignment

(Image from Sean Eddy, PLoS Comp. Biol. 4:e1000069)
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HMMer3 speeds

Eddy, PLoS Comp. Biol. 7:e1002195
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HMMer3 sensitivity and specificity

Eddy, PLoS Comp. Biol. 7:e1002195
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Stochastic Context Free Grammars

Can emit from both sides → base pairs

Can duplicate emitter → bifurcations
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INFERNAL/Rfam

Modified from the INFERNAL User Guide – Nawrocki, Kolbe, and Eddy
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Homework

Keep working on your dynamic programming code.
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