Sequence Alignment

Mark Voorhies

4/12/2018

Exercise: Scoring an ungapped alignment

Given two sequences and a scoring matrix, find the offset that yields the best scoring ungapped alignment.

Exercise: Scoring an ungapped alignment

Given two sequences and a scoring matrix, find the offset that yields the best scoring ungapped alignment.

```
def score(S,x,y):
    assert(Ien(x)= Ien(y))
    s = 0
    for (i,j) in zip(x,y):
    s += S[i][j]
    return s
```


Exercise: Scoring an ungapped alignment

Given two sequences and a scoring matrix, find the offset that yields the best scoring ungapped alignment.


```
def subseqs(x,y,i):
```

def subseqs(x,y,i):
if(i>0):
if(i>0):
y=y[i:]
y=y[i:]
elif(i< <):
elif(i< <):
x = x[-i :]
x = x[-i :]
L}=\operatorname{min}(\operatorname{len}(x),\operatorname{len}(y)
L}=\operatorname{min}(\operatorname{len}(x),\operatorname{len}(y)
L=mincten(x),len

```
    L=mincten(x),len
```


Exercise: Scoring an ungapped alignment

Given two sequences and a scoring matrix, find the offset that yields the best scoring ungapped alignment.

```
def alignment(x,y,i):
    if(i>0):
        x = "-"* i+x
    elif(i< < ):
    y = "-"*(-i)+y
    L}=\operatorname{len}(y)-\operatorname{len}(x
    if(L>0):
        x += "-"*L
    elif(L< 0):
        y += "-"*(-L)
    return x,y
```


Exercise: Scoring an ungapped alignment

Given two sequences and a scoring matrix, find the offset that yields the best scoring ungapped alignment.

```
```

def ungapped(S,x,y):

```
```

def ungapped(S,x,y):
best = None
best = None
best_score = None
best_score = None
for i in range(-len(x)+1,len(y)):
for i in range(-len(x)+1,len(y)):
(sx, sy) = subseqs(x,y,i)
(sx, sy) = subseqs(x,y,i)
s = score(S,sx,sy)
s = score(S,sx,sy)
if((best_score is None) or (s > best_score)):
if((best_score is None) or (s > best_score)):
best_score = s
best_score = s
best = i
best = i
return best, best_score, alignment(x,y,best)

```
    return best, best_score, alignment(x,y,best)
```

return best, best_score, alignment(x,y,best)

```


\section*{Exercise: Scoring an ungapped alignment}

Given two sequences and a scoring matrix, find the offset that yields the best scoring ungapped alignment.
```

def ungapped(S,x,y):
best = None
best_score = None
for i in range(-Ien(x)+1, len(y)):
(sx, sy) = subseqs(x,y,i)
s=score(S,sx,sy)
if((best_score is None) or (s > best_score)):
best_score = s
best = i
return best, best_score, alignment(x,y,best)

```


\section*{Exercise: Scoring a gapped alignment}

Write a new scoring function with separate penalties for opening a zero length gap (e.g., \(G=-11\) ) and extending an open gap by one base (e.g., \(\mathrm{E}=-1\) ).
\[
S_{\text {gapped }}(x, y)=S(x, y)+\sum_{i}^{\text {gaps }}(G+E * \operatorname{len}(i))
\]

\section*{Exercise: Scoring a gapped alignment}
\[
S_{\text {gapped }}(x, y)=S(x, y)+\sum_{i}^{\text {gaps }}(G+E * \operatorname{len}(i))
\]


\section*{Exercise: Scoring a gapped alignment}
\[
S_{g a p p e d}(x, y)=S(x, y)+\sum_{i}^{\text {gaps }}(G+E * \operatorname{len}(i))
\]
```

def gapped_score(seq1, seq2,
s, g = 0, e = - 1):
gap = None
score = 0
for pair in zip(seq1,seq2):
assert(pair != ("-","-"))
try:
curgap = pair.index("-")
except ValueError:
score += s[pair[0]][pair[1]]
gap = None
else:
if(gap != curgap):
score += g
gap = curgap
score += e
return score

```


\section*{Exercise: Scoring a gapped alignment}
\[
S_{\text {gapped }}(x, y)=S(x, y)+\sum_{i}^{\text {gaps }}(G+E * \operatorname{len}(i))
\]
```

def gapped_score(seq1, seq2,
s, g=0, e = -1):
gap = None
score = 0
for pair in zip(seq1,seq2):
assert(pair != ("-","-"))
try:
curgap = pair.index("-")
except ValueError:
score += s[pair[0]][pair[1]]
gap = None
else:
if(gap != curgap):
score += g
gap = curgap
score += e
return score

```
```

def gapped_score(seq1, seq2,
$\mathrm{s}, \mathrm{g}=0, \mathrm{e}=-1)$:
gap $=$ None
score $=0$
for ($\mathrm{c} 1, \mathrm{c} 2$) in zip(seq1, seq2):
if $((\mathrm{c} 1="-")$ and $(\mathrm{c} 2="-"))$:
raise ValueError
elif(c1 ="-"):
if (gap ! $=1$):
score $+=\mathrm{g}$
gap $=1$
score $+=e$
elif(c2 ="-"):
if (gap ! = 2):
score $+=\mathrm{g}$
gap $=2$
score $+=e$
else:
score $+=s[c 1][c 2]$
gap $=$ None
return score

```



How many ways can we align two sequences?


How many ways can we align two sequences?


How many ways can we align two sequences?

\section*{0000000000000}

\section*{How many ways can we align two sequences?}

\section*{0000000000000}

Binomial formula:
\[
\binom{k}{r}=\frac{k!}{(k-r)!r!}
\]

\section*{How many ways can we align two sequences?}

\section*{0000000000000}

Binomial formula:
\[
\begin{gathered}
\binom{k}{r}=\frac{k!}{(k-r)!r!} \\
\binom{2 n}{n}=\frac{(2 n)!}{n!n!}
\end{gathered}
\]

\section*{How many ways can we align two sequences?}

\section*{0000000000000}

Binomial formula:
\[
\begin{gathered}
\binom{k}{r}=\frac{k!}{(k-r)!r!} \\
\binom{2 n}{n}=\frac{(2 n)!}{n!n!}
\end{gathered}
\]

Stirling's approximation:
\[
x!\approx \sqrt{2 \pi}\left(x^{x+\frac{1}{2}}\right) e^{-x}
\]

\section*{How many ways can we align two sequences?}

\section*{0000000000000}

Binomial formula:
\[
\begin{gathered}
\binom{k}{r}=\frac{k!}{(k-r)!r!} \\
\binom{2 n}{n}=\frac{(2 n)!}{n!n!}
\end{gathered}
\]

Stirling's approximation:
\[
\begin{gathered}
x!\approx \sqrt{2 \pi}\left(x^{x+\frac{1}{2}}\right) e^{-x} \\
\binom{2 n}{n} \approx \frac{2^{2 n}}{\sqrt{\pi n}}
\end{gathered}
\]

\section*{Dynamic Programming}



Needleman-Wunsch





Needleman-Wunsch


The implementation of local alignment is the same as for global alignment, with a few changes to the rules:
- Initialize edges to 0 (no penalty for starting in the middle of a sequence)
- The maximum score is never less than 0 , and no pointer is recorded unless the score is greater than 0 (note that this implies negative scores for gaps and bad matches)
- The trace-back starts from the highest score in the matrix and ends at a score of 0 (local, rather than global, alignment)

Because the naive implementation is essentially the same, the time and space requirements are also the same.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{8}{|r|}{A G C G G T A} \\
\hline & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline G & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
\hline A & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline G & 0 & 0 & 2 & 1 & 1 & 1 & 0 & 0 \\
\hline C & 0 & 0 & 1 & & 2 & 1 & 0 & 0 \\
\hline G & 0 & 0 & 0 & 2 & 4 & -3 & -2 & 1 \\
\hline G & 0 & 0 & 1 & 1 & 3 & & & 3 \\
\hline A & 0 & 1 & 0 & 0 & 2 & 4 & 4 & 5 \\
\hline
\end{tabular}

Implement Needleman-Wunsch global alignment with zero gap opening penalties. Try attacking the problem in this order:
(1) Initialize and fill in a dynamic programming matrix by hand (e.g., try reproducing the example from my slides on paper).
(2) Write a function to create the dynamic programming matrix and initialize the first row and column.
(3) Write a function to fill in the rest of the matrix
(9) Rewrite the initialize and fill steps to store pointers to the best sub-solution for each cell.
(3) Write a backtrace function to read the optimal alignment from the filled in matrix.
If that isn't enough to keep you occupied, try implementing Smith-Waterman local alignment and/or non-zero gap opening penalties.```

