Practical Bioinformatics

Mark Voorhies

5/21/2019

Change of Coordinates

Principal Components Analysis (PCA)

Is there a point of view that makes our data easier to look at?

$$
\begin{aligned}
x^{\prime} & =a x+b y+c z \\
y^{\prime} & =d x+e y+f z \\
z^{\prime} & =g x+h y+i z \\
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right) & =\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
\end{aligned}
$$

Principal Components Analysis (PCA)

Is there a point of view that makes our data easier to look at?

Principal Components Analysis (PCA)

Is there a point of view that makes our data easier to look at?

Implemented as Singular Value Decomposition (SVD) after centering (covariance PCA) and, possibly, scaling (correlation PCA)

Correlations among more than two samples

Homework: Dictionaries

(1) Write a function to return the antisense strand of a DNA sequence in $3^{\prime} \rightarrow 5$ ' orientation.
(2) Write a function to return the complement of a DNA sequence in $5^{\prime} \rightarrow 3^{\prime}$ orientation.
(3) Write a function to translate a DNA sequence

