Heuristic Alignment and Searching

Mark Voorhies

3/30/2011

Types of alignments

Global Alignment Each letter of each sequence is aligned to a letter or a gap (e.g., Needleman-Wunsch).

Local Alignment An optimal pair of subsequences is taken from the two sequences and globally aligned (e.g., Smith-Waterman).

Types of alignments

Global Alignment Each letter of each sequence is aligned to a letter or a gap (e.g., Needleman-Wunsch).

Local Alignment An optimal pair of subsequences is taken from the two sequences and globally aligned (e.g., Smith-Waterman). This tends to be more biologically relevant.

The implementation of local alignment is the same as for global alignment, with a few changes to the rules:

The implementation of local alignment is the same as for global alignment, with a few changes to the rules:

• Initialize edges to 0 (no penalty for starting in the middle of a sequence)

The implementation of local alignment is the same as for global alignment, with a few changes to the rules:

- Initialize edges to 0 (no penalty for starting in the middle of a sequence)
- The maximum score is never less than 0, and no pointer is recorded unless the score is greater than 0 (note that this implies negative scores for gaps and bad matches)

The implementation of local alignment is the same as for global alignment, with a few changes to the rules:

- Initialize edges to 0 (no penalty for starting in the middle of a sequence)
- The maximum score is never less than 0, and no pointer is recorded unless the score is greater than 0 (note that this implies negative scores for gaps and bad matches)
- The trace-back starts from the highest score in the matrix and ends at a score of 0 (local, rather than global, alignment)

Timing CLUSTALW from the command line:

```
for i in 50 100 150 200 250 300 350 400 450; do
    head -n $i -q G217B.iron.fasta Pb01.iron.fasta > temp.fasta;
    time clustalw -infile=temp.fasta -type=DNA -align;
done
```

Timing CLUSTALW from the command line:

```
for i in 50 100 150 200 250 300 350 400 450; do
    head -n $i -q G217B.iron.fasta Pb01.iron.fasta > temp.fasta;
    time clustalw -infile=temp.fasta -type=DNA -align;
done
```

The output looks like this:

```
Sequences (1:2) Aligned. Score: 0
Guide tree file created: [temp.dnd]
There are 1 groups
Start of Multiple Alignment
Aligning...
Group 1: Delayed
Alignment Score 7238
CLUSTAL-Alignment file created [temp.aln]
real 0m3.400s
user 0m3.388s
sys 0m0.012s
```

You can copy the timing results into Excel.

You can t the timing results to a curve in Excel.

$$y = Ax^B (1)$$

$$\log y = \log Ax^B \tag{2}$$

$$= \log A + B \log x \tag{3}$$

$$= A^{0} + B \log x \tag{4}$$

You can t the timing results to a curve in Excel.

$$y = Ax^B (1)$$

$$\log y = \log Ax^B \tag{2}$$

$$= \log A + B \log x \tag{3}$$

$$= A^{\theta} + B \log x \tag{4}$$

Here is an R script that does the same thing:

O(MN) time is too slow!

source: ftp://ftp.ncbi.nih.gov/genbank/gbrel.txt

Basic Local Alignment Search Tool

Why BLAST?

- Fast, heuristic approximation to a full Smith-Waterman local alignment
- Developed with a statistical framework to calculate expected number of false positive hits.
- Heuristics biased towards \biologically relevant" hits.

Seeding searches

Most of the magic in a sequence-search tool lives in its indexing scheme

Program	Purpose	Indexing
BLAST	Database searching	Target indexing, 3aa or 11nt words
BLAT	mRNA mapping	Query indexing
BOWTIE	RnaSeq	Specialized index for low quality, short
e-PCR	Simulated PCR	Annealing-oriented index

BLAST: A quick overview

BLAST: Seed from exact word hits

BLAST: Myers and Miller local alignment around seed pairs

BLAST: High Scoring Pairs (HSPs)

Gapped BLAST: Merge neighboring HSPs

How fast is BLAST?

How fast is BLAST?

How fast is BLAST?

The basic flavors of BLAST

Target	Protein	DNA
Query		
Protein	BLASTP	TBLASTN
DNA	BLASTX	BLASTN
		TBLASTX

BLASTX: Nucleotide query vs. Protein Database

BLASTX: Nucleotide query vs. Protein Database

Sometimes it's still worth running locally...

S) Done

$$E = kmne S (5)$$

- S: HSP score
- E: Expected number of \random" hits in a database of this size scoring at least S.
- m: Query length
- n: Database size
- k: Correction for similar, overlapping hits
- ullet λ : normalization factor for scoring matrix

$$E = kmne S (5)$$

- S: HSP score
- E: Expected number of \random" hits in a database of this size scoring at least S.
- m: Query length
- n: Database size
- k: Correction for similar, overlapping hits
- ullet λ : normalization factor for scoring matrix

A variant of this formula is used to generate sum probabilities for combined HSPs.

$$E = kmne S (5)$$

- S: HSP score
- E: Expected number of \random" hits in a database of this size scoring at least S.
- m: Query length
- n: Database size
- k: Correction for similar, overlapping hits
- ullet λ : normalization factor for scoring matrix

A variant of this formula is used to generate sum probabilities for combined HSPs.

$$p = 1 - e^{-E} \tag{6}$$

$$E = kmne S (5)$$

- S: HSP score
- E: Expected number of \random" hits in a database of this size scoring at least S.
- m: Query length
- n: Database size
- k: Correction for similar, overlapping hits
- ullet λ : normalization factor for scoring matrix

A variant of this formula is used to generate sum probabilities for combined HSPs.

$$p = 1 - e^{-E} \tag{6}$$

(If you care about the di erence between E and p, you're already in trouble)

Important points:

- Extreme value distribution
- Assumption of in nite sequence length
- No rigorous framework for gap statistics (hmmer3 tries to II this gap)

 BLAST is very fast, at the expense of not guaranteeing globally optimal results

- BLAST is very fast, at the expense of not guaranteeing globally optimal results
- But the trade-o s that it makes are biased towards \biologically relevant" results

- BLAST is very fast, at the expense of not guaranteeing globally optimal results
- But the trade-o s that it makes are biased towards \biologically relevant" results
- And it provides a statistical framework for evaluating its results.

- BLAST is very fast, at the expense of not guaranteeing globally optimal results
- But the trade-o s that it makes are biased towards \biologically relevant" results
- And it provides a statistical framework for evaluating its results.
- We can, and should, treat our computer work as we would an experiment:
 - Document protocols and observations
 - Run positive and negative controls
 - Keep results organized and dated

Homework

- Search your favorite proteins and collate interesting hits in one FASTA le per query { play with adding informative names and annotations (we will use these FASTA les tomorrow).
- Play with the BLAST book protocols (chapter 9) on the NCBI website
- Play with positive and negative controls (including permuted sequences)