Pairwise Alignment

Mark Voorhies

3/27/2012

Review: Tips and tricks

Making a file executable:
chmod "a+x" pydotter.py
Handling file/directory names with spaces:
cd My \backslash Directory \backslash with \backslash Spaces
or
cd "My」Directory」with Spaces"

Review: Tips and tricks

Killing a process on OS X :

- Try ctrl-c
- If that doesn't work:
- ps -awx | grep name_of_process
- First column in ps output is PID (process ID)
- kill PID
- If that doesn't work:

```
kill -KILL PID
```

- On Linux:
ps -ealf | grep name_of_process

Review: Content

- FASTA files
>Name Free-form annotation
MGCLLIMKEGGPGRKKHKLIVMLYLDENQ
EHELPIMTRAPPEDINADNAMACHINEW NQEDLYMNILKKHGPPGEDEDRKHEDEDG

Review: Content

- FASTA files
>Name Free-form annotation
MGCLLIMKEGGPGRKHKLIVMLYLDENQ
EHELPIMTRAPPEDINADNAMACHINEW
NQEDLYMNILKKHGPPGEDEDRKHEDEDG
- Dotplots: unbiased plot of all possible ungapped alignments of two sequences.

Pairwise Alignment

How can we automate our dotplot protocol to find the "best" gapped alignment of our sequences?

Pairwise Alignment

How can we automate our dotplot protocol to find the "best" gapped alignment of our sequences?

What do we mean by best?

Pairwise Alignment

How can we automate our dotplot protocol to find the "best" gapped alignment of our sequences?

What do we mean by best?

- Residues with equivalent functional roles are paired

Pairwise Alignment

How can we automate our dotplot protocol to find the "best" gapped alignment of our sequences?

What do we mean by best?

- Residues with equivalent functional roles are paired
- Residues that derive from the same position in the common ancestor are paired (homology)

Pairwise Alignment

How can we automate our dotplot protocol to find the "best" gapped alignment of our sequences?

What do we mean by best?

- Residues with equivalent functional roles are paired
- Residues that derive from the same position in the common ancestor are paired (homology)
- The sequence alignment maximizes a similarity function

Deriving scores from alignments

Frequency of residue i :

$$
p_{i}
$$

Deriving scores from alignments

Frequency of residue i :

$$
p_{i}
$$

Frequency of residue i aligned to residue j :
$q_{i j}$

Deriving scores from alignments

Frequency of residue i :

$$
p_{i}
$$

Frequency of residue i aligned to residue j :

$$
q_{i j}
$$

Expected frequency if i and j are independent:

$$
p_{i} p_{j}
$$

Deriving scores from alignments

Frequency of residue i :

$$
p_{i}
$$

Frequency of residue i aligned to residue j :

$q_{i j}$

Expected frequency if i and j are independent:

$$
p_{i} p_{j}
$$

Ratio of observed to expected frequency:

$$
\frac{q_{i j}}{p_{i} p_{j}}
$$

Deriving scores from alignments

Frequency of residue i :

$$
p_{i}
$$

Frequency of residue i aligned to residue j :

$$
q_{i j}
$$

Expected frequency if i and j are independent:

$$
p_{i} p_{j}
$$

Ratio of observed to expected frequency:

$$
\frac{q_{i j}}{p_{i} p_{j}}
$$

Log odds (LOD) score:

$$
s(i, j)=\log \frac{q_{i j}}{p_{i} p_{j}}
$$

PAM (Dayhoff) and BLOSUM matrices

- PAM1 matrix originally calculated from manual alignments of highly conserved sequences (myoglobin, cytochrome C, etc.)

PAM (Dayhoff) and BLOSUM matrices

- PAM1 matrix originally calculated from manual alignments of highly conserved sequences (myoglobin, cytochrome C, etc.)
- We can think of a PAM matrix as evolving a sequence by one unit of time.

PAM (Dayhoff) and BLOSUM matrices

- PAM1 matrix originally calculated from manual alignments of highly conserved sequences (myoglobin, cytochrome C, etc.)
- We can think of a PAM matrix as evolving a sequence by one unit of time.
- If evolution is uniform over time, then PAM matrices for larger evolutionary steps can be generated by multiplying PAM1 by itself (so, higher numbered PAM matrices represent greater evolutionary distances).

PAM (Dayhoff) and BLOSUM matrices

- PAM1 matrix originally calculated from manual alignments of highly conserved sequences (myoglobin, cytochrome C, etc.)
- We can think of a PAM matrix as evolving a sequence by one unit of time.
- If evolution is uniform over time, then PAM matrices for larger evolutionary steps can be generated by multiplying PAM1 by itself (so, higher numbered PAM matrices represent greater evolutionary distances).
- The BLOSUM matrices were determined from automatically generated ungapped alignments. Higher numbered BLOSUM matrices correspond to smaller evolutionary distances. BLOSUM62 is the default matrix for BLAST.

BLOSUM80

BLOSUM62

BLOSUM45

In log space, multiplication and division become addition and subtraction:

$$
\begin{aligned}
\log (x y) & =\log (x)+\log (y) \\
\log (x / y) & =\log (x)-\log (y)
\end{aligned}
$$

Therefore, exponentiation becomes multiplication:

$$
\log \left(x^{y}\right)=y \log (x)
$$

Also, we can change of the base of a logarithm like so:

$$
\log _{A}(x)=\log (x) / \log (A)
$$

Scoring an alignment

Log odds (LOD) score:

$$
s(i, j)=\log \frac{q_{i j}}{p_{i} p_{j}}
$$

Scoring an alignment

Log odds (LOD) score:

$$
s(i, j)=\log \frac{q_{i j}}{p_{i} p_{j}}
$$

Multiplying independent probabilities is equivalent to adding independent log probabilities.

Scoring an alignment

Log odds (LOD) score:

$$
s(i, j)=\log \frac{q_{i j}}{p_{i} p_{j}}
$$

Multiplying independent probabilities is equivalent to adding independent log probabilities.
Therefore, for an ungapped alignment can be scored as:

$$
S(x, y)=\log \prod_{i}^{N} \frac{q_{x_{i} y_{i}}}{p_{x_{i}} p_{y_{i}}}=\sum_{i}^{N} s\left(x_{i}, y_{i}\right)
$$

Scoring an alignment

Log odds (LOD) score:

$$
s(i, j)=\log \frac{q_{i j}}{p_{i} p_{j}}
$$

Multiplying independent probabilities is equivalent to adding independent log probabilities.
Therefore, for an ungapped alignment can be scored as:

$$
S(x, y)=\log \prod_{i}^{N} \frac{q_{x_{i} y_{i}}}{p_{x_{i}} p_{y_{i}}}=\sum_{i}^{N} s\left(x_{i}, y_{i}\right)
$$

What about gaps?

Scoring an alignment

Log odds (LOD) score:

$$
s(i, j)=\log \frac{q_{i j}}{p_{i} p_{j}}
$$

Multiplying independent probabilities is equivalent to adding independent log probabilities.
Therefore, for an ungapped alignment can be scored as:

$$
S(x, y)=\log \prod_{i}^{N} \frac{q_{x_{i} y_{i}}}{p_{x_{i}} p_{y_{i}}}=\sum_{i}^{N} s\left(x_{i}, y_{i}\right)
$$

What about gaps?

- Probability of an insertion/deletion event (gap opening, G)
- Length distribution of insertions/deletions (gap extension, E)

Scoring an alignment

Log odds (LOD) score:

$$
s(i, j)=\log \frac{q_{i j}}{p_{i} p_{j}}
$$

Multiplying independent probabilities is equivalent to adding independent log probabilities.
Therefore, for an ungapped alignment can be scored as:

$$
S(x, y)=\log \prod_{i}^{N} \frac{q_{x_{i} y_{i}}}{p_{x_{i}} p_{y_{i}}}=\sum_{i}^{N} s\left(x_{i}, y_{i}\right)
$$

What about gaps?

- Probability of an insertion/deletion event (gap opening, G)
- Length distribution of insertions/deletions (gap extension, E)

$$
S_{\text {gapped }}(x, y)=S(x, y)+\sum_{i}^{\text {gaps }}\left(G+E * L_{i}\right)
$$

Scoring an alignment

Log odds (LOD) score:

$$
s(i, j)=\log \frac{q_{i j}}{p_{i} p_{j}}
$$

Multiplying independent probabilities is equivalent to adding independent log probabilities.
Therefore, for an ungapped alignment can be scored as:

$$
S(x, y)=\log \prod_{i}^{N} \frac{q_{x_{i} y_{i}}}{p_{x_{i}} p_{y_{i}}}=\sum_{i}^{N} s\left(x_{i}, y_{i}\right)
$$

What about gaps?

- Probability of an insertion/deletion event (gap opening, G)
- Length distribution of insertions/deletions (gap extension, E)

$$
S_{\text {gapped }}(x, y)=S(x, y)+\sum_{i}^{\text {gaps }}\left(G+E * L_{i}\right)
$$

We find an optimal alignment by finding x and y that maximize S.

How many ways can we align two sequences?

How many ways can we align two sequences?

0000000000000

Binomial formula:

$$
\begin{gathered}
\binom{k}{r}=\frac{k!}{(k-r)!r!} \\
\binom{2 n}{n}=\frac{(2 n)!}{n!n!}
\end{gathered}
$$

Stirling's approximation:

$$
\begin{gathered}
x!\approx \sqrt{2 \pi}\left(x^{x+\frac{1}{2}}\right) e^{-x} \\
\binom{2 n}{n} \approx \frac{2^{2 n}}{\sqrt{\pi n}}
\end{gathered}
$$

Scoring an alignment quickly

$$
\frac{2^{2 n}}{\sqrt{\pi n}} \text { is too expensive. }
$$

Scoring an alignment quickly

$$
\begin{gathered}
\frac{2^{2 n}}{\sqrt{\pi n}} \text { is too expensive. } \\
S_{\text {gapped }}(x, y)=S(x, y)+\sum_{i}^{\text {gaps }}\left(G+E * L_{i}\right)
\end{gathered}
$$

Scoring an alignment quickly

$$
\begin{gathered}
\frac{2^{2 n}}{\sqrt{\pi n}} \text { is too expensive. } \\
S_{\text {gapped }}(x, y)=S(x, y)+\sum_{i}^{\text {gaps }}\left(G+E * L_{i}\right)
\end{gathered}
$$

The best alignment of any pair of subsequences is independent of the global alignment.

Dynamic Programming

Needleman-Wunsch Global Alignment

Needleman-Wunsch Global Alignment

Needleman-Wunsch Global Alignment

Needleman-Wunsch Global Alignment

Alignment speeds

- DOTTER: $O\left(n^{2}\right)$
- Exhaustive search: $\frac{2^{2 n}}{\sqrt{\pi n}}$
- Dynamic programming: $O\left(n^{2}\right)$ to $O\left(n^{3}\right)$

Setting gap penalties in CLUSTALX

Annotating features in JALVIEW

／home／mvoorhie／Projects／Courses／PracticalBioinformatics／gui／web．．． 口 c 『＇ 区 File Edit Select View Format Colour Calculate Web Service
oil12904｜emilca439602 3／2－508

Sil 12000 F｜emh｜ $\mid 04339602.1 / 2-506$
Co118904｜enin｜CA4339602．1／2－508

 Si｜164604｜ab｜44．437096．1／7．－385

 2i｜264604 bib｜44437096． 1 ｜／3－385

 Sil164604 bel｜4．4．437096．1／2－385
Til 18904 ｜emin｜ $04439602.1 / 2-506$ Sil $16460+$ gb｜ $14 A 432096.1 / 2-385$

Si $112090+\mid$ ermb｜ $24439602.1 / 7-506$ gil16460＋｜G｜AAA32096．2／h－385
O128904｜emh｜C4439602 $1 / 2-508$ N164604 bob｜A4，431096．1／1－385

Oil18904｜Emh｜C．4439602．1／R－508

 $25-$－KKRFIDRNSRVATG－LSGEEEOPLL－EGA－NP 64
21 LVRKKSL－BONLIKNGKL．．．KD－FLKTHKHMP 48 65 －R．－SEEE．．．GD IVALKNYMNADYFGEIGVGT 92
$49 A S K Y F E A A A L I G D-E F L E N Y L D T E Y F G T I G I G T 81$ 93 PPOKFTVIFDTGSSNLWVP SARCYFGIACYLFSR 126 127 YKAGASS TYKKNGKPAAIOTGTGSIAGYFSEDSV150 127 YKAGASSTYKKNGKPAAIOYGTGSIAGYFSEDSV160
115 ENEDDSSTFEATSQELSITYGTGSMTGILGTDTVI48 161 TVGDLVVKODEF－TEATKEPGITFLV．AKFDGIL192
149 DUGGISDTNGIFGLSETT－EPG．SFLYYAFFDGILIB0 149 QNGGISDTNG1FGLSET－EPG－SFLYYAFFDGILIBO 193 GLGFKE SV－OKAVPVWYKMIEQGLVS－DFVFSF 224
161 GLAMRSISASO－ATPVFONLWDRLVSOD－LFSY 212 225 WLNRHUDEGEGGEI IFGGMDPKHYVGEHTYVPUT 258
213 YLSSN－D日S－GSVMLLGGIDSSYYTGSLNMPVS 24 273 YLSSN－DDS－GSVULLGGIDSSYYTGSLNWYPVS 244 259 QKG MOFDMGD－VLVGGKSTGFGAGGCAA IADSO 291
245 VEGYMOITL－DSITMDGETIA－CSGGCCAIVDTG 276
 326 YEOQILDLLLAETOPKKICSOVOLCTFDETRGVS 359
293

 428 GSLGSMPDIEFTIGGKKFALKPEEYILKVGEGAA 461 31s－SL．－－FDIVFIINGVQYPLSFSAMILQ－DDDS． 340 462 AOC। BEF TAMDIPRPRGPLWILGDVFMGPYHTVF 495 $341-$－T TGGFEGMDVPTSSGELWILGDVFIRQYYTVF 372

Sequence 2ID：all $164504 \mid$ ob｜AAA31096．1］Residue：ASN（47）

Annotating features in JALVIEW

File Edit Select View Format Colour Calculate Web Service

21).80.
rataresticilanceroviniacian

1 MGTRGLALALLAAVLLLOTVLPAASEAEGLVRIA 34
1 M--
25 L-KKRPIDENSRVATG-LSGEEEQPLL-EGA-MPE4 ${ }_{21}$ LVR $_{B}$ Selection Edit

93 PPOKFTVIFDTG Group 26
27 YKAGASSTYKKNGKPAATO YGTGSIAGYFSEDSV160 IIS ENPDDSSTFEATSQELSITYOTGSMTGILGTDTV148 161 TVGDLUVKODEF-TEATKEPGITFLV. AKFDGIL 192
149 QUGGISDTNGIFGLSET-EPG-SFLYYAFFDGILIBO 193 GLGFKE SV-GKAVPVWYKMIEQGLVS-DFVF $\$ 224$
181 OLAYPSISASO-ATPVFDNLWDQOLVSQE-LFSY 212 225 WLNRHUDEGEGGEI IFGGMDPKHYVGEHTYVPVT 258 213 YLSSN-DDS-GSVULLGGIDSSYYTGSLNWYPVS 244 259 QKG MOFDMGD-VLVGGKSTGFCAGGCAA IADSG 291

 428 GSLGSMPDIEFTIGGKKFALKPEEYILKVGEGAA 461 428 GSLGSMPDIEFTIGGKKFALKPEEYILKVGEGAA 461
SIS-SL.--FDIVETINGVQYPLSESAMILQ-DDDS. 340 462 AOC I SCF TAMDIPFPRGPLWILGDVFMEPYHTVF 495 462 AOCI SGF TAMD IPFPRGPLWILGDVFMGPYHTVF 495
$341--C T S G F E G M D V R T S S G E L W I L G D V F I R Q Y Y T V F ~$
372

Sequence 2 ID: gil 164604 gb|AAA31096 II
equence I ID: all 1B904|emb|CAA39602.1 Residue: LY5 (35)

Annotating features in JALVIEW

Annotating features in JALVIEW

－		
Eile Tools Help Window		
／home／mvoorhie／Projects／Courses／PracticalBioinformatics／gui／webr．．．ロ̌ 区＇区		
File Edit Select View	Format Colour Calculate Web Service	
cili 2904 ｜embl｜ceas39602．1／I－508 	1 MGTRGLALALLAAYLLLDTVLPAASEAEGLVFIALSS 1－－－MKWLLLLSLVVLSECLVKVF．－．－LVEKKSZ	
gi｜29904｜0mbl｜CA439602．21／2－50s Sil154604｜gb｜44．437096．21／2．385		
ciliz904｜emblCu，439602．1／I－508 		
gil23904｜0mbl $\mathrm{CA439602.1/2-508}$ 		
cil13904｜embica，439602．1／7－50e 	129 ELSITMOTGSMTGI LOYDTVOVOCISDTMQIEOLSIES	
 	176 TKEPG।TFLVAKFDGILGLGFKETSVEKAVPVWYK 210 164 ETEPGSFLYYAPFDGILGLAYPSISASGATPVFON193	
si｜25：60才｜gbluws1096．2｜／2－395	211 MMECLVSDPVFGFWLNRHVEBEGOEMFBCMDF245 199 LWDOCLVSODLFSVYLSSNDOS－GSVVLECIDSZ31	
cil79904｜emb C4439602．117－508 	$246 \mathrm{KHYVGEHTYYPVTOKGYWOFDMGDVLVGGKSTGFCz80}$ 232 STMTGLLNMXPVSVEGYWDITLDSITMDG－EI／ACz6	
si｜251604｜gb｜4431096．2｜／2－395	256 SGGCOAVDTGTSLLTGPTSAIAMIOSDIGAS ．．． 297	
cil18904｜emb 1 Ca439602．1／2－508 		
si｜251604｜gk｜4433096．1／2－395		
cil79904｜emblca，439602．111－508 		
si｜754604｜gb｜4．4．43096．1／2－385	421 EESAVDCGSLGEMPDIEFTIGGKKFALKPEEYILK455 302 GEMVISESSIDSLPDIVFTINGUOYPLSPSAYILOSSS	
cil12904｜emb 1 Ca，939602．112－508 	436 VEEGRAROU，SGFTAMDIPPFREFLWILGDVFMGF 490 ss7 DoD－－－SCTSGFEBMCYPTS SBELWILQDVFIROSG7	
${ }^{9}\|15904\| 0 \mathrm{mb}$｜c4439602．1／2－509 2i｜154604｜ch｜4．4431096．1／／－355	491 YH TVFDVEKLRIGFAKAA 508 368 YYMFDRANMKVGLAPVA 85	

Annotating features in JALVIEW

Annotating features in JALVIEW

Annotating features in JALVIEW

Annotating features in JALVIEW

Annotating features in JALVIEW

Comparing files on *NIX

\# List all differences between two text files \# (empty output for identity)
diff HvSs.gap0.0.both.aln HvSs.gap0.0.mult.aln \# Report only whether the files differ \# (empty output for identity)
diff -q HvSs.gap0.0.both.aln HvSs.gap0.0.mult.aln
(*NIX $=$ *BSD, OS X, Solaris, Linux, Windows with Cygwin, ...)

Homework

- Use a text or sequence editor to create a spliced variant of HvPhytepsin that can be aligned to the full HsSaposinC sequence
- Find the GenBank entries for HvPhytepsin and SsPepsinogen (tip: use the identifiers from the FASTA files) and find the corresponding transcript sequences.
- How easy is it to align the proteins vs. the transcripts?
- Can you tell if you are getting equivalent results from the two alignments?
- Try repeating this exercise for a pair of sequences where genomic sequence is available; e.g., A. nidulans VosA (ABQ18268.1), and H. capsulatum Ryp2 (ACB59236.1).

