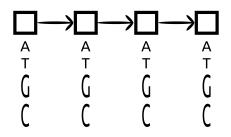
Mark Voorhies

4/2/2012

Mark Voorhies Hidden Markov Models


æ

・聞き ・ ほき・ ・ ほき

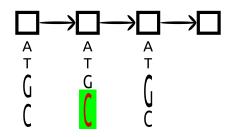
Searching with PSI-BLAST

2 💿	Protein BLAST: search databases using a protein query - Mozilla Firefox	
Eile <u>E</u> dit <u>V</u> iew Hi <u>s</u>	story Bookmarks Tools Help	
🔶 🧼 👻 😋	😂 🏠 😂 http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?CMD=Web&PAGE=Proteins&PR 🗇 🔹 😽 🔹 psi-blast	
S Protein BLAST: s	earch databa 💠	•
		^
Or, upload file	Browse 🥹	
Job Title		
	Enter a descriptive title for your BLAST search 🥹	
Align two or π	iore sequences 😡	
Choose Sear	ch Set	
Database	Non-redundant protein sequences (nr)	
Organism Optional	Exclude +	
	Enter organism common name, binomial, or tax id. Only 20 top taxa will be shown.	
Exclude	Models (XM/XP) Uncultured/environmental sample sequences	
Optional Entrez Query		
Optional	Enter an Entrez query to limit search 😡	
Program Sele	ection	
Algorithm	O blastp (protein-protein BLAST)	
	PSI-BLAST (Position-Specific Iterated BLAST)	
	O PHI-BLAST (Pattern Hit Initiated BLAST) Choose a BLAST algorithm	
	choose a BCAST algorithm ag	
BLAST	Search using PSI-BLAST (Position-Specific Iterated BLAST) Show results in a new window	
		Ų
Algorithm param	<u>eters</u>	
		÷
Done		5

@▶ ∢ ≣▶

1st order Markov Model

$\xrightarrow{A}_{T} \xrightarrow{C} ($


⊡ ► < ≣ ►

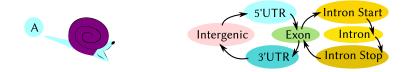
1st order Markov Model

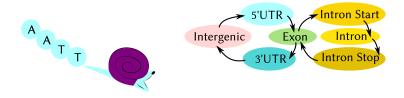
$\square \longrightarrow \square \longrightarrow \square \longrightarrow \square$ A A T T T G G G C G

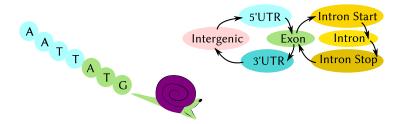
> ∢≣

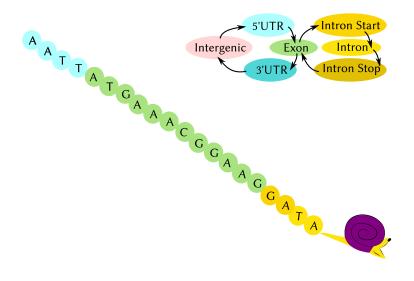

1st order Markov Model

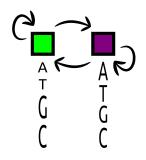
What are Markov Models good for?


- Background sequence composition
- Spam

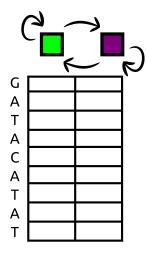

æ

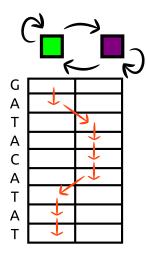

→ ∢ Ξ



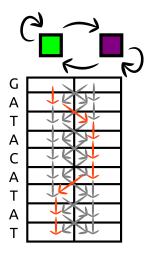

æ

3

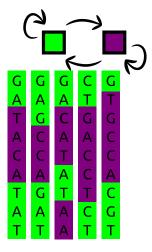




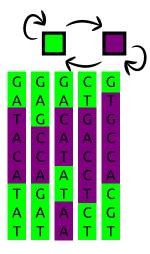
The Viterbi algorithm: Alignment



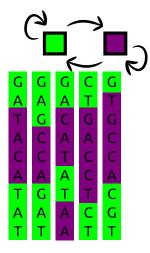
The Viterbi algorithm: Alignment


- Dynamic programming, like Smith-Waterman
- Sums best log probabilities of emissions and transitions (*i.e.*, multiplying independent probabilities)
- Result is most likely annotation of the target with hidden states

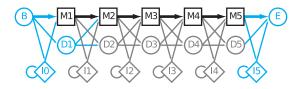
The Forward algorithm: Net probability


- Probability-weighted sum over all possible paths
- Simple modification of Viterbi (although summing probabilities means we have to be more careful about rounding error)
- Result is the probability that the observed sequence is explained by the model
- In practice, this probability is compared to that of a null model (*e.g.*, random genomic sequence)

Training an HMM

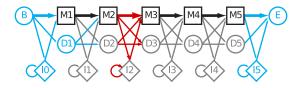

 If we have a set of sequences with known hidden states (e.g., from experiment), then we can calculate the emission and transition probabilities directly

Training an HMM

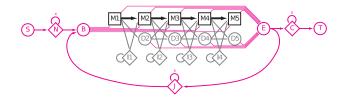

- If we have a set of sequences with known hidden states (e.g., from experiment), then we can calculate the emission and transition probabilities directly
- Otherwise, they can be iteratively fit to a set of unlabeled sequences that are known to be true matches to the model

Training an HMM

- If we have a set of sequences with known hidden states (e.g., from experiment), then we can calculate the emission and transition probabilities directly
- Otherwise, they can be iteratively fit to a set of unlabeled sequences that are known to be true matches to the model
- The most common fitting procedure is the Baum-Welch algorithm, a special case of expectation maximization (EM)


Profile Alignments: Plan 7

(Image from Sean Eddy, PLoS Comp. Biol. 4:e1000069)

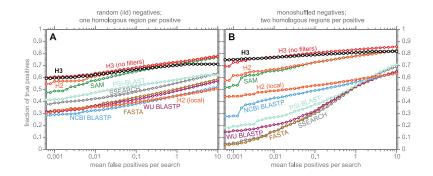

글▶ 글

Profile Alignments: Plan 7 (from Outer Space)

(Image from Sean Eddy, PLoS Comp. Biol. 4:e1000069)

Rigging Plan 7 for Multi-Hit Alignment

(Image from Sean Eddy, PLoS Comp. Biol. 4:e1000069)

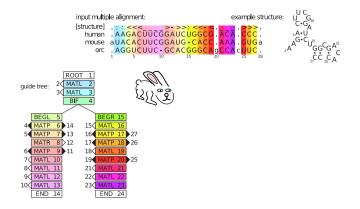

HMMer3 speeds

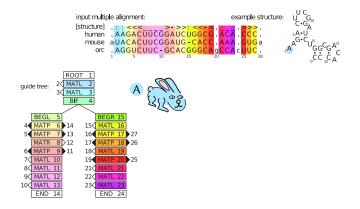
Eddy, PLoSCompBiol 7:e1002195

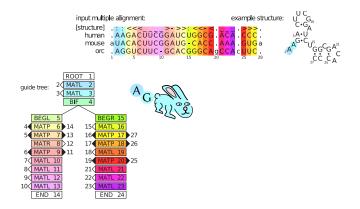
< □ > <

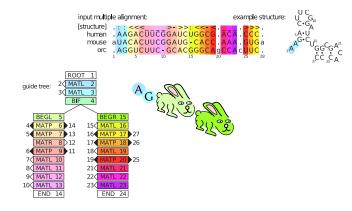
HMMer3 sensitivity and specificity

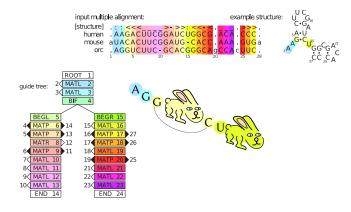
Eddy, PLoSCompBiol 7:e1002195


- Compare the performance of BLASTP, PSI-BLAST, phmmer, and jackhmmer on a difficult sequence such as AGA1p (CAA96325.1). Use the shuffling tool on the course website to generate negative controls with the same composition. For positive controls, see Euk. Cell 5:628.
- Download Cluster3 and JavaTreeView
- Read PNAS 95:14863


Stochastic Context Free Grammars






- $\bullet\,$ Can emit from both sides $\to\,$ base pairs
- $\bullet\,$ Can duplicate emitter $\rightarrow\,$ bifurcations

