Practical Bioinformatics

Mark Voorhies

5/31/2013

Exercise: Scoring a gapped alignment

- Given two equal length gapped sequences (where "-" represents a gap) and a scoring matrix, calculate an alignment score with a -1 penalty for each base aligned to a gap.
- ② Write a new scoring function with separate penalties for opening a zero length gap (e.g., G = -11) and extending an open gap by one base (e.g., E = -1).

$$S_{gapped}(x, y) = S(x, y) + \int_{i}^{gaps} (G + E \ len(i))$$

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

EM: Training an HMM

- If we have a set of sequences with known hidden states (e.g., from experiment), then we can calculate the emission and transition probabilities directly
- Otherwise, they can be iteratively fit to a set of unlabeled sequences that are known to be true matches to the model
- The most common fitting procedure is the Baum-Welch algorithm, a special case of expectation maximization (EM)

EM: Estimating transcript abundances

Roberts and Pachter, Nature Methods 10:71

Evolution implies a self-consistent model

Distances (Pairwise relationships)

Topology (Evolutionary history)

Measure all pairwise distances by dynamic programming

Measure all pairwise distances by dynamic programming

Progressive alignment following the guide tree

Progressive alignment following the guide tree

Progressive alignment following the guide tree

Measure distances directly from the alignment

Generate neighbor-joining tree from new distances

Generate neighbor-joining tree from new distances

Generate neighbor-joining tree from new distances

Generate bootstrap values from subsets of the alignment

Generating a multiple alignment in CLUSTALX

Generating a multiple alignment in CLUSTALX

Generating a neighbor joining tree in CLUSTALX

Viewing the alignment and tree in JALVIEW

Related tools

- Multiple Alignment
 - T-Coffee
 - MUSCLE
 - COBALT
 - hmmalign (HMMer3)
- Tree building
 - MrBayes (Bayesian MCMC)
 - PhyML (maximum likelihood)
 - FastTree2 (very large heuristic trees)

Homework

Finish your dynamic programming implementation.