
1 Practical Bioinformatics – Day 4

1.1 Introspecting classes

How can we �gure out how to get at the data in our ExpressionPro�le class?
Create an instance of the class:

import cdt

data = cdt.ExpressionProfile("supp2data.cdt")

IPython’s ? tells us:

• The type and class of an object

• Where to �nd the corresponding source code

• The signatures for any member functions, etc.

• Any available docstrings (but we didn’t provide any in the original version of our class)

data?

?? tells us more, including the source code for the class, which is enough to remember the names
of the member variables

data??

So, e.g., we can get at the gene list like this:

data.geneName[:10]

[’YBR166C’,

’YOR357C’,

’YLR292C’,

’YGL112C’,

’YIL118W’,

’YDL120W’,

’YHL025W’,

’YGL248W’,

’YIL146C’,

’YJR106W’]

We can use dir to get a list of an object’s attributes:

dir(data)

[’__doc__’,

’__init__’,

’__module__’,

’expCond’,

1



’geneAnn’,

’geneName’,

’num’,

’write’]

dir() with no arguments lists all top-level objects. For IPython in {pylab mode, this is a very
long list. More useful is the IPython magic %who, which lists all top-level objects that we explicitly
created.

%who

cdt data

We can also use help to view an object’s docstrings (again, we haven’t de�ned any for Expres-
sionPro�le, so its help output is terse).

help(data)

Help on instance of ExpressionProfile in module cdt:

class ExpressionProfile

| Methods defined here:

|

| __init__(self, fn)

|

| write(self, fname)

1.1.1 After updating cdt.py with docstrings

reload(cdt)

<module ’cdt’ from ’cdt.py’>

data = cdt.ExpressionProfile("supp2data.cdt")

help(data)

Help on instance of ExpressionProfile in module cdt:

class ExpressionProfile

| Annotated gene expression matrix. Isomorphic to a CDT file.

|

| Methods defined here:

|

| __init__(self, fn)

| Initialize from the name of a CDT file.

|

| write(self, fname)

| Save to fname in CDT format.

2



1.1.2 Digression

After de�ning ExpressionPro�le.num with a @property decorator, so that we could add a docstring
to it.

reload(cdt)

<module ’cdt’ from ’cdt.py’>

data = cdt.ExpressionProfile("supp2data.cdt")

help(data)

Help on instance of ExpressionProfile in module cdt:

class ExpressionProfile

| Annotated gene expression matrix. Isomorphic to a CDT file.

|

| Methods defined here:

|

| __init__(self, fn)

| Initialize from the name of a CDT file.

|

| write(self, fname)

| Save to fname in CDT format.

|

| ----------------------------------------------------------------------

| Data descriptors defined here:

|

| num

| Two dimensional array of log ratios for genes vs. conditions.

data.num[5][5:10]

[-0.12, 0.01, -0.36, -0.01, -0.17]

At this point, we rolled back the @property change to cdt.py to avoid confusion (too late?)

1.1.3 End digression

1.2 Calculating Pearson correlations for all pairs of genes

Load the pearson function from the example on the website

import stats

reload(stats)

from stats import pearson

Our �rst try at a function to calculate the pairwise correlations.
Rather than de�ning it explicitly in terms of pearson, we ask for a distance parameter to be

3



passed to the function. We assume that distance is a mapping from two equal length vectors to a
scalar, and that it is symetric (D(x, y) = D(y, x))

We take advantage of the symetry to only calculate the upper triangle of the matrix, �lling in
the lower triangle by copying previously calculated values.

def distmatrix(data, distance):

D = []

for i in xrange(len(data.geneName)):

row = []

for j in xrange(len(data.geneName)):

if(j >= i):

row.append(distance(data.num[i],data.num[j]))

else:

row.append(D[j][i])

D.append(row)

return D

As de�ned, we have to remember to call distmatrix with both an ExpressionPro�le and a
distance function

dists = distmatrix(data)

---------------------------------------------------------------------------

TypeError Traceback (most recent call last)

<ipython-input-22-42361735885d> in <module>()

----> 1 dists = distmatrix(data)

TypeError: distmatrix() takes exactly 2 arguments (1 given)

Here, we rede�ne our function with pearson as the default distance function (to be used if this
parameter is not supplied).

We also de�ne a second optional parameter, N. If given, the calculation is run for only the �rst
N genes { this is useful for quick debugging of our function, and for �guring out its run time as a
function of problem size (i.e., its computational complexity).

def distmatrix(data, distance = pearson, N = None):

D = []

if(N is None):

N = len(data.geneName)

for i in xrange(N):

row = []

for j in xrange(N):

if(j >= i):

row.append(distance(data.num[i],data.num[j]))

else:

row.append(D[j][i])

D.append(row)

return D

4



Timing our function for the �rst 10 genes

%time dist = distmatrix(data, N = 10)

CPU times: user 8 ms, sys: 0 ns, total: 8 ms

Wall time: 6.32 ms

If we only supply two parameters, without explicitly stating which optional parameter we are
supplying, python assumes that we are supplying the �rst optional parameter (distance).

dist = distmatrix(data, 10)

---------------------------------------------------------------------------

TypeError Traceback (most recent call last)

<ipython-input-26-3098912401ab> in <module>()

----> 1 dist = distmatrix(data, 10)

<ipython-input-23-747ed186cb1e> in distmatrix(data, distance, N)

7 for j in xrange(N):

8 if(j >= i):

----> 9 row.append(distance(data.num[i],data.num[j]))

10 else:

11 row.append(D[j][i])

TypeError: ’int’ object is not callable

Supplying all three parameters works (they’re in the right order, so we don’t need to be explicit
about who’s who)

%time dist = distmatrix(data, pearson, 10)

CPU times: user 4 ms, sys: 0 ns, total: 4 ms

Wall time: 2.7 ms

Scaling up to the �rst 100 genes

%time dist = distmatrix(data, N = 100)

CPU times: user 244 ms, sys: 36 ms, total: 280 ms

Wall time: 262 ms

A quick rede�nition of our function to handle N larger than the number of genes:

def distmatrix(data, distance = pearson, N = None):

D = []

if(N is None):

N = len(data.geneName)

else:

N = min(N, len(data.geneName))

for i in xrange(N):

row = []

5



for j in xrange(N):

if(j >= i):

row.append(distance(data.num[i],data.num[j]))

else:

row.append(D[j][i])

D.append(row)

return D

Scaling up to 1000 genes:

%time dist = distmatrix(data, N = 1000)

CPU times: user 20.6 s, sys: 2.44 s, total: 23.1 s

Wall time: 22.9 s

And the full calculation:

%time dist = distmatrix(data)

CPU times: user 2min 11s, sys: 6.8 s, total: 2min 18s

Wall time: 2min 17s

{> run time of ∼2 minutes for a single core of a hyper-threaded 2.5 GHz dual core i5-3210M
processor running in 64bit mode.

For a similar architecture (e.g., another i5), single-core speed should depend linearly on the
clock speed (e.g., a 5 GHz processor would run twice as fast).

(Without explicitly setting up our problem for parallel processing, adding additional processor
cores will give us no speed up).

For other architectures, run times are problem dependent (in this case, a 
oating point bench-
mark would be a good predictor of the relative run time).

See if you can �gure out the time scaling for your computer.

6


