

Copyright Mark Voorhies 2017-2018

For screen and print pdfs of this primer, see

http://histo.ucsf.edu/BMS270/PythonPrimer.htm

http://creativecommons.org/licenses/by-nc-sa/3.0/

Version 0.03
git commit
e2c05f3266

ICANDIGIT

What is Python?

Python is an

interpreted

programming
language

That means
we say what
we want done
in a special

language

Translate("""ATTTGTGCT
AACGATATCGGTATAACT""")

And python

interprets it

as instructions
the computer
can follow

*

*Properly, Python is the language, and

a Python interpreter is a program

that does the interpreting.
There are many intepreters available:

We will use the

Jupyter Notebook

which we can
talk to via a
web browser

CPython shell

pymol Embedded
python interpreter

Jupyter notebook

[] "Hello, world"
Hello, world

Installing the jupyter notebook
with enthought canopy express

1) Download the Canopy Express installer
 for your platform from:
https://store.enthought.com/downloads/#default

2) Follow the platform
 specific instructions
 to install Canopy
 Express, choosing the
 Python 3.5 installer

3) From Canopy, choose
 Tools: Canopy Terminal

4) In the terminal,
type: jupyter notebook

this will open the
jupyter notebook
server in your
default web browser

5) From your web browser, choose python3
 from the "New" menu

6) You're ready to code! in your new
 notebook cell type "Hello, world"
 and press shift-Return (Mac)
 or shift-Enter (PC)

this will open a
Python notebook
in a new browser
tab or window

In this guide,
we will show
input cells
as round boxes

and output
cells as

rectangles

When Python executes
your input, it will add

a number in the brackets
next to the input cell

Files Running Clusters Upload New
Text File
Folder
Terminal

Notebooks
Python 3

7) now move on to
 the next page
 and follow along
 in your notebook!

Your first notebook: Python as a calculator

press
shift+enter
to execute cell

Great Scott!
Check out the
computational

power!

[2] 3-2
1

Some more
basic math:

[3] 2*3
6

[4] 6/4
1.5

We can save
our results
by assigning
them to a
variable

[7] x=2+3
Assignment
hides our
output

But we can
get it back

like so

[5] 2**3
8

[6] 6%4
2

subtraction

Multiplication

Division

Exponentiation

Modular
division

(remainder)

Some tricks we can
do with assignment

[9] A=2000
 T=3000
 G=1000
 C=1200

[10]((G+C)/
 (A+T+G+C))

0.30555

[8] x
5

[11]Tm=64.9+(41*
 (G+C-16.4)/
 (A+T+G+C))

 Evaluating
formulae

[12] n=0

 Feedback

[13]n=n+2
 n

2 [14]n=n+2
 n

4 [15]n=n+2
 n

6
[16]n=n+2
 n

8

 Press
ctrl-enter

to repeatedly
evaluate

a cell

[17] x=1
 n=3

[18]x=x-1/n+1/(n+2)
 n=n+4
 x*4
3.466666666666667

 Here's another fun
feedback trick

[19]x=x-1/n+1/(n+2)
 n=n+4
 x*4
3.3396825396825403

 Where does it
converge?

[1] 1+1
2

this is a good Time to take a break

How are your
fingers doing?

Here's a Trick
to save some

typing

Instead of:

You can use:

Likewise: -=, *=, /=...

[1] x=x+1

[2] x+=1

1) Make a jupyter notebook
 with common lab formulae

2) Try evaluating this series:
 1+1/1!+1/2!+1/3!+1/4!...

[1] x=1
 for n in range(3,19,4):
 x+=-1/n+1/(n+2)
 x*4

x=1
for n in range(3,19,4):
 x+=-1/n+1/(n+2)

Behold - the mighty
for loop!

But that's
small potatoes

compared to
this

there's a lot
going on here.
Let's break

it down

this indented block
is executed at
each step of
the for loop

Start at 3,
take steps of 4,
stop before 19

this
variable

through
values
in this
range

steps,
one at
a time

we'll learn
more about
range in

class

then practice
what you've

learned

x*4

Let's watch
it in action

Before

first iteration

second iteration third iteration

fouth iteration

x=1

Not bad, but what if
we try changing 19
to a higher value?

With the for
loop doing our

work for us, it's
easy as pi!

Be patient
8 decimals

takes about
20 seconds on

my laptop

range
is full

n=
3

x-=1/3 .6667

x+=1/(3+2) .8667

-whee!

n= 7

x-=1/7 .7238

x+=1/(7+2) .8349

n=
11

x-=1/11 .7440

x+=1/(11+2) .8209

n= 15

x-=1/15 .7543
x+=1/(15+2) .8131

x*4=3.252

range
is empty

How are those
fingers doing?

want to save
even more

typing?

Just as we can save
data in a variable
we can save code

in a function

[1] def pi(N):
 x=1
 for n in range(3,3+4*N,4):
 x+=-1/n+1/(n+2)
 return x*4

We use the parameter (N)
to set the number of

terms that we calculate

Define a function
named pi with one

parameter (N)

[2] pi(10)
3.1891847822776

[3] pi(1000000)
3.1415931535896

 As in a for loop
the body of the

function goes in an
indented block

 when we call a function
we include parameter
values in parenthesis

 The return statement
is responsible for

returning the result
of the function

[4] def add(x,y):
 return x+y

[5] add(3,5)
8

[6] def fortytwo():
 return 42

[7] fortytwo()
42

[8] def f(x=3,y=5):
 return x-y

[9] f()
-2

[10] f(11)
6

[11] f(y=1)
2

[12] f(8,7)
1

 Functions can
take more than
one parameter

 no parameters

 or optional
parameters

by default,
Parameters
get plugged
in left to

right

you can
override

the default
by naming

a parameter

writing our own
functions is nifty,
but wouldn't it

be great if they
were already

written for us?

in fact, we've seen
some built-in

functions already

[1] float(8)

8.0

[2] for i in range(0,10,2):
 x += i

[3] help(float)

help is another
useful built-in

[4] help(__builtins__)

wonder how
many built-ins

there are?

[5] print(42)
42

[6] print("forty two")
forty two

[7] print("six"*7)
sixsixsixsixsixsixsix

print(...)
 print(value, ..., sep=' ', end='\n', file=sys.stdout)
 Prints the values to a stream, or to sys.stdout by default.
 Optional keyword arguments:
 file: a file-like object (stream); defaults to the current
 sep: string inserted between values, default a space.
 end: string appended after the last value, default a newli

class float(object)
 | float(x) -> floating point number
 |
 | Convert a string or number to a floating point number, if possible.
 |
 | Methods defined here:
 |
 | __abs__(...)
 | x.__abs__() <==> abs(x)

range(...)
 range(stop) -> list of integers
 range(start, stop[, step]) -> list of integers
 Return a list containing an arithmetic progressi
 range(i, j) returns [i, i+1, i+2, ..., j-1]; sta
 When step is given, it specifies the increment
 For example, range(4) returns [0, 1, 2, 3]. The
 These are exactly the valid indices for a list o

max(...)
 max(iterable[, key=func])
 max(a, b, c, ...[, key=fu
 With a single iterable ar
 With two or more argument

ord(...)
 ord(c) ->
 Return th

sum(...)
 sum(sequence[, start]) -> value
 Return the sum of a sequence of numb
 of parameter 'start' (which defaults
 empty, return start.

But what is a string?

read on to find out!

A plethora
of python

paraphernalia!

Help on class float in modu

class float(object)
 | float(x) -> floating poi
 |
 | Convert a string or number
 |
 | Methods defined here:
 |
 | __abs__(...)
 | x.__abs__() <==> abs(x)

print is an
especially

useful
function

it converts its
parameters to
strings and
prints those
strings to the

standard output

sys.stdout.
ne.

ion of integers.
art (!) defaults to 0.
(or decrement).
e end point is omitted!
of 4 elements.

) -> value
unc]) -> value
rgument, return its largest item.
ts, return the largest argument.

bers (NOT strings) plus the value
s to 0). When the sequence is

[4] s = "ATG"+"TAG"
 s

"ATGTAG"

So far, we've been playing with numbers.

A string lets us play with text by interpreting
numbers as a sequence of eight bit characters

Normally, pytHon uses
the ascII convention

to map eight bit
numbers to letters,
digits, and symbols

01000001
27 26 25 24 23 22 21 20

20 26+ =1 64+ =65 A
eight bits=one byte

We can look up the
number for a single
character with ord

and use chr for the
opposite lookup

Here are the most
COMMON characters:[2] ord("A")

65
[3] for i in range(33,127):
 print(i,chr(i))

33 !
34 "
35 #
36 $
37 %
38 &

We can usually
ignore the fact
that characters

are numbers

Instead, think of
strings as sequences

that we can

slice

and index

Note that,
in python,
we count

from zero

We can also iterate
over a string in a
for loop:[5] s[:3]

"ATG"

[6] s[3:]
"TAG"

[7] s[2:5]
"GTA"

[8] s[0]
"A"

first three

everything
after

first three

after first
two until

fifth

ATGTAG
012345

[9] x = ord("a")-ord("A")
 for i in s:
 print(chr(ord(i)+x))

a
t
g
t
a
g

but what if we care
about polyketides or

plant lineages? can we
interpret numbers as
arbitrary sequences?

[1] "Hello, world"
Hello, world

Enclose strings in "quotes"

splice

[11] data=[1.2,2.5,1.8,1.6,2.4]
 print(data+[3.1])
 print(data[:3])
 print(data[3:])
 print(data[1:4])
 print(data[0])

[1.2, 2.5, 1.8, 1.6, 2.4, 3.1]
[1.2, 2.5, 1.8]
[1.6, 2.4]
[2.5, 1.8, 1.6]
1.2

Yes we can!

A list is a sequence of anything

"Spam" 42 print
"PGI1" "PFK1" "FBA1" "TDH1" "PGK1"

[10] l=["Hello","world"]
 l
'Hello','world'

Separate list
elements with

commas

We can slice, splice, and index
a list just like a string Likewise, we can iterate

over a list in a for loop

Strings and lists
are very similar,
but there are a
few differences

We can modify the
inside of a list

but not a string

instead we have
to use splicing

Lists have a special
member function

for appending

strings use the
concatenation

operatorand there are
a few methods
that ony make

sense for strings

[12] F = [min,max,sum]
 for f in F:
 print(f(data))

1.2
2.5
9.5

[13] data[1]="C"
 data

[1.2,'C',1.8,
 1.6,2.4]

[14] s=s[:1]+"C"+s[2:]
 s

'ACGTAG'

[16] s+="*"
 s

'ACGTAG*'
[17] "Hello,world".split(",")

['Hello','world'] [18] "".join(["Hello","world"])

'Helloworld'

Enclose lists in
square brackets

FunctionString int

[15] data.append("*")
 data

[1.2,'C',1.8,
 1.6,2.4,'*']

That was a lot to digest.
take some time to practice
functions, strings, and lists.

I hope this primer
was useful. if you're

feeling lost, try
working slowly

through all of the
examples, and try
doing the exercises.

for more on getting started
with python, I highly recommend

(And we'll cover
 all of this in class)

mark Lutz's "Learning python"
http://search.safaribooksonline.com/9781449355722

And Mark Pilgrim's
"Dive into Python 3"

http://histo.ucsf.edu/BMS270/diveintopython3-r802.pdf

[1] encrypt("APPLE")

'BQQMF'

As a final exercise,
Try using split, join, chr, and
ord to write encryption and
decryption functions for a

cipher like this:

[2] encrypt("BQQMF")

'APPLE'

See you in class!

http://histo.ucsf.edu/BMS270/

