
Introduction to Python

Practical Bioinformatics

Mark Voorhies

6/14/2010

Mark Voorhies Practical Bioinformatics

Introduction to Python

Goals

At the end of this class, you should have the confidence to take on
the day to day tasks of “bioinformatics”.

Writing standalone scripts.

Shepherding data between analysis tools.

Aggregating data from multiple sources.

Implementing new methods from the literature.

Mark Voorhies Practical Bioinformatics

Introduction to Python

Goals

At the end of this class, you should have the confidence to take on
the day to day tasks of “bioinformatics”.

Writing standalone scripts.

Shepherding data between analysis tools.

Aggregating data from multiple sources.

Implementing new methods from the literature.

Mark Voorhies Practical Bioinformatics

Introduction to Python

Goals

At the end of this class, you should have the confidence to take on
the day to day tasks of “bioinformatics”.

Writing standalone scripts.

Shepherding data between analysis tools.

Aggregating data from multiple sources.

Implementing new methods from the literature.

Mark Voorhies Practical Bioinformatics

Introduction to Python

Goals

At the end of this class, you should have the confidence to take on
the day to day tasks of “bioinformatics”.

Writing standalone scripts.

Shepherding data between analysis tools.

Aggregating data from multiple sources.

Implementing new methods from the literature.

Mark Voorhies Practical Bioinformatics

Introduction to Python

Goals

At the end of this class, you should have the confidence to take on
the day to day tasks of “bioinformatics”.

Writing standalone scripts.

Shepherding data between analysis tools.

Aggregating data from multiple sources.

Implementing new methods from the literature.

Mark Voorhies Practical Bioinformatics

Introduction to Python

Goals

At the end of this class, you should have the confidence to take on
the day to day tasks of “bioinformatics”.

We will focus on a single general-purpose tool: Python

We will focus on a single research area: DNA microarrays

Mark Voorhies Practical Bioinformatics

Introduction to Python

Goals

At the end of this class, you should have the confidence to take on
the day to day tasks of “bioinformatics”.

We will focus on a single general-purpose tool: Python

We will focus on a single research area: DNA microarrays

Mark Voorhies Practical Bioinformatics

Introduction to Python

Course outline

Introduction to Python

File Formats

Microarrays

Distance Metrics
Clustering
Statistics

Sequence Analysis

Mark Voorhies Practical Bioinformatics

Introduction to Python

Resources

Router:

SSID: BMS270

password: deoxyribose

Getting Python

http://www.python.org/download

python -m idlelib.idle

Course website:

https://moodle.ucsf.edu/login/index.php

http://www.library.ucsf.edu/services/galenaccounts

Resources on the course website:
Syllabus

Papers and code (for downloading before class)
Slides and transcripts (available after class)

On-line textbooks (Safari Bookshelf, Numerical Recipes, ...)

Programs for this course (Python, Cluster3, JavaTreeView, ...)

Mark Voorhies Practical Bioinformatics

Introduction to Python

Resources

Router:

SSID: BMS270

password: deoxyribose

Getting Python

http://www.python.org/download

python -m idlelib.idle

Course website:

https://moodle.ucsf.edu/login/index.php

http://www.library.ucsf.edu/services/galenaccounts

Resources on the course website:
Syllabus

Papers and code (for downloading before class)
Slides and transcripts (available after class)

On-line textbooks (Safari Bookshelf, Numerical Recipes, ...)

Programs for this course (Python, Cluster3, JavaTreeView, ...)

Mark Voorhies Practical Bioinformatics

Introduction to Python

Resources

Router:

SSID: BMS270

password: deoxyribose

Getting Python

http://www.python.org/download

python -m idlelib.idle

Course website:

https://moodle.ucsf.edu/login/index.php

http://www.library.ucsf.edu/services/galenaccounts

Resources on the course website:
Syllabus

Papers and code (for downloading before class)
Slides and transcripts (available after class)

On-line textbooks (Safari Bookshelf, Numerical Recipes, ...)

Programs for this course (Python, Cluster3, JavaTreeView, ...)

Mark Voorhies Practical Bioinformatics

Introduction to Python

Resources

Router:

SSID: BMS270

password: deoxyribose

Getting Python

http://www.python.org/download

python -m idlelib.idle

Course website:

https://moodle.ucsf.edu/login/index.php

http://www.library.ucsf.edu/services/galenaccounts

Resources on the course website:
Syllabus

Papers and code (for downloading before class)
Slides and transcripts (available after class)

On-line textbooks (Safari Bookshelf, Numerical Recipes, ...)

Programs for this course (Python, Cluster3, JavaTreeView, ...)

Mark Voorhies Practical Bioinformatics

Introduction to Python

Resources

Router:

SSID: BMS270

password: deoxyribose

Getting Python

http://www.python.org/download

python -m idlelib.idle

Course website:

https://moodle.ucsf.edu/login/index.php

http://www.library.ucsf.edu/services/galenaccounts

Resources on the course website:
Syllabus

Papers and code (for downloading before class)
Slides and transcripts (available after class)

On-line textbooks (Safari Bookshelf, Numerical Recipes, ...)

Programs for this course (Python, Cluster3, JavaTreeView, ...)

Mark Voorhies Practical Bioinformatics

Introduction to Python

Talking to Python: Nouns

This i s a comment
This i s an i n t (i n t e g e r)
42
This i s a f l o a t (r a t i o n a l number)
4 . 2
These a r e a l l s t r i n g s (s equence s o f c h a r a c t e r s)
’ATGC ’

” Mendel ’ s Laws”

”””>CAA36839 . 1 Ca lmodu l in
MADQLTEEQIAEFKEAFSLFDKDGDGTITTKELGTVMRSLGQNPTEAEL
QDMINEVDADDLPGNGTIDFPEFLTMMARKMKDTDSEEEIREAFRVFDK
DGNGYISAAELRHVMTNLGEKLTDEEVDEMIREADIDGDGQVNYEEFVQ
MMTAK”””

Mark Voorhies Practical Bioinformatics

Introduction to Python

Python as a Calculator

Add i t i on
1+1
Sub t r a c t i o n
2−3
Mu l t i p l i c a t i o n
3∗5
D i v i s i o n (gotcha : be s u r e to use f l o a t s)
5 / 3 . 0
Exponen t i a t i o n
2∗∗3
Order o f o p e r a t i o n s
2∗3−(3+4)∗∗2

Mark Voorhies Practical Bioinformatics

Introduction to Python

Fun with logarithms

In log space, multiplication and division become addition and
subtraction:

log(xy) = log(x) + log(y)

log(x/y) = log(x) − log(y)

Therefore, exponentiation becomes multiplication:

log(xy) = y log(x)

Also, we can change of the base of a logarithm like so:

logA(x) = log(x)/ log(A)

Mark Voorhies Practical Bioinformatics

Introduction to Python

Fun with logarithms

In log space, multiplication and division become addition and
subtraction:

log(xy) = log(x) + log(y)

log(x/y) = log(x) − log(y)

Therefore, exponentiation becomes multiplication:

log(xy) = y log(x)

Also, we can change of the base of a logarithm like so:

logA(x) = log(x)/ log(A)

Mark Voorhies Practical Bioinformatics

Introduction to Python

Fun with logarithms

In log space, multiplication and division become addition and
subtraction:

log(xy) = log(x) + log(y)

log(x/y) = log(x) − log(y)

Therefore, exponentiation becomes multiplication:

log(xy) = y log(x)

Also, we can change of the base of a logarithm like so:

logA(x) = log(x)/ log(A)

Mark Voorhies Practical Bioinformatics

Introduction to Python

Python as a Calculator

You measure the following log2 expression ratios for YFG:

log2

(
oxidative stress

reference

)
= 2.1

log2

(
heat shock

reference

)
= 3.2

log2

(
reductive stress

reference

)
= −1

1 What is the difference in expression between oxidative stress
and heat shock as a log2 ratio?

2 If YFG is present at 10,000 mRNA/cell under reductive stress,
how many copies are present under oxidative stress?

Mark Voorhies Practical Bioinformatics

Introduction to Python

Saving and comparing objects

Use a s i n g l e = f o r a s s i gnment :
TLC = ”GATACA”
YFG = ”CTATGT”
MFG = ”CTATGT”

A name can occu r on both s i d e s o f an as s i gnment :
c o d o n p o s i t i o n = 1857
c o d o n p o s i t i o n = c o d o n p o s i t i o n + 3

Short−hand f o r common updates :
codon += 3
w e i g h t −= 10
e x p r e s s i o n ∗= 2
CFU /= 1 0 . 0

Mark Voorhies Practical Bioinformatics

Introduction to Python

Checking values with print

Use p r i n t to show the v a l u e o f an o b j e c t
message = ” H e l l o , w o r l d ”
p r i n t message
Or s e v e r a l o b j e c t s :
p r i n t 1 , 2 , 3 , 4

Mark Voorhies Practical Bioinformatics

Introduction to Python

Saving and comparing objects

Use doub l e == f o r compar i son :
YFG == MFG

Other compar i son o p e r a t o r s :
Not equa l :
TLC != MFG
Les s than :
3 < 5
Grea t e r than , o r equa l to :
7 >= 6

Mark Voorhies Practical Bioinformatics

Introduction to Python

Saving and comparing objects

i f (YFG == MFG) :
p r i n t ”Synonyms ! ”

i f (p r o t e i n l e n g t h < 6 0) :
p r i n t ” P r o b a b l y too s h o r t to f o l d . ”

e l i f (p r o t e i n l e n g t h > 1 0 0 0 0) :
p r i n t ”What i s t h i s , t i t i n ?”

e l s e :
p r i n t ”Okay , t h i s l o o k s r e a s o n a b l e . ”

Mark Voorhies Practical Bioinformatics

Introduction to Python

Collections of objects

A l i s t i s a mutable sequence o f o b j e c t s
m y l i s t = [1 , 3 .1415926535 , ”GATACA” , 4 , 5]
Ind e x i n g
m y l i s t [0] == 1
m y l i s t [−1] == 5
As s i g n i n g by i ndex
m y l i s t [0] = ”ATG”
S l i c i n g
m y l i s t [1 : 3] == [3 . 1 4 1 5 9 2 6 5 3 5 , ”GATACA”]
m y l i s t [: 2] == [1 , 3 . 1 4 1 5 9 2 6 5 3 5]
m y l i s t [3 :] == [4 , 5]
As s i g n i n g a second name to a l i s t
a l s o m y l i s t = m y l i s t
As s i g n i n g to a copy o f a l i s t
m y o t h e r l i s t = m y l i s t [:]

Mark Voorhies Practical Bioinformatics

Introduction to Python

Repeating yourself: iteration

A f o r l oop i t e r a t e s th rough a l i s t one e l ement
at a t ime :
f o r i i n [1 , 2 , 3 , 4 , 5] :

p r i n t i , i ∗∗2

A wh i l e l oop i t e r a t e s f o r as l ong as a c o n d i t i o n
i s t r u e :
p o p u l a t i o n = 1
whi le (p o p u l a t i o n < 1 e5) :

p r i n t p o p u l a t i o n
p o p u l a t i o n ∗= 2

Mark Voorhies Practical Bioinformatics

Introduction to Python

Summary statistics

Given a list of log2 expression ratios:
x = [1.8, 2.0, 1.7, 1.9, 2.3, 1.6, 2.2, 1.8, 1.9, 4.0, 1.7]

1 Print the corresponding expression ratio values

2 Calculate the mean (average) log2 ratio:

x̄ =

∑N
i=1 xi
N

3 Calculate the mean expression ratio

4 In what situations do either of these mean values capture
useful information about our measurements?

Mark Voorhies Practical Bioinformatics

Introduction to Python

Verb that noun!

return value = function(parameter, ...)
“Python, do function to parameter”

Bu i l t−i n f u n c t i o n s
Genera te a l i s t from 0 to n−1
a = r an ge (5)
Sum ove r an i t e r a b l e o b j e c t
sum (a)
Find the l e n g t h o f an o b j e c t
l e n (a)

Mark Voorhies Practical Bioinformatics

Introduction to Python

Summary statistics

Given a list of log2 expression ratios:
x = [1.8, 2.0, 1.7, 1.9, 2.3, 1.6, 2.2, 1.8, 1.9, 4.0, 1.7]

1 Calculate the mean (average) log2 ratio:

x̄ =

∑N
i=1 xi
N

using functions to simplify your calculation.

Mark Voorhies Practical Bioinformatics

Introduction to Python

Verb that noun!

return value = function(parameter, ...)
“Python, do function to parameter”

Impo r t i ng f u n c t i o n s from modules
import math
math . s q r t (9)
math . l o g (8) / math . l o g (2)

from math import l o g
l o g (1 6) / l o g (2)

Mark Voorhies Practical Bioinformatics

Introduction to Python

Summary statistics

Given a list of expression ratios:
r = [4.00, 4.59, 3.73, 4.29, 5.66, 3.48, 5.28, 4.00, 4.29, 18.38, 3.73]

1 Write a for loop to convert the list to log2 ratios

2 How can you do this conversion without destroying the
original list?

Mark Voorhies Practical Bioinformatics

Introduction to Python

Short-hand for converting lists

from math import l o g
l o g 2 = l o g (2)
l o g r a t i o s = [l o g (i)/ l o g 2 f o r i i n r a t i o s]

Mark Voorhies Practical Bioinformatics

Introduction to Python

New verbs

def f u n c t i o n (parameter1 , parameter2) :
”””Do t h i s ! ”””
Code to do t h i s
return r e t u r n v a l u e

Mark Voorhies Practical Bioinformatics

Introduction to Python

Setting IDLE’s working directory

OS X

Open a terminal

cd path/to/working/directory

python -m idlelib.idle

Windows

Use (file) explorer to find the path to your working directory
and copy it to the clipboard.

Right-click your IDLE menu item and choose “properties”.

Paste your working directory into the “Start in” field, making
sure that it is quoted.

Mark Voorhies Practical Bioinformatics

Introduction to Python

Loading and re-loading your functions

Use impor t the f i r s t t ime you l oad a module
(And keep u s i n g impor t u n t i l i t l o a d s
s u c c e s s f u l l y)
import my module

my module . m y f u n c t i o n (4 2)

Once a module has been loaded , use r e l o a d to
f o r c e python to read your new code
r e l o a d (my module)

Mark Voorhies Practical Bioinformatics

Introduction to Python

Make your own Fun

Write functions for these calculations:

1 Mean:

x̄ =

∑N
i xi
N

(1)

2 Standard deviation:

σx =

√∑N
i (xi − x̄)2

N − 1
(2)

3 Correlation coefficient (Pearson’s r):

r(x , y) =

∑
i (xi − x̄)(yi − ȳ)√∑

i (xi − x̄)2
√∑

i (yi − ȳ)2
(3)

Mark Voorhies Practical Bioinformatics

Introduction to Python

Summary

Python is a general purpose programming language.

We can extend Python’s built-in functions by defining our own
functions (or by importing third party modules).

We can define complex behaviors through control statements
like “for”, “while”, and “if”.

We can use an interactive Python session to experiment with.
new ideas and to explore data.

Saving interactive sessions is a good way to document our
computer “experiments”.

Likewise, we can use modules and scripts to document our
computer “protocols”.

Most of these statements are applicable to any programming
language (Perl, R, Bash, Java, C/C++, FORTRAN, ...)

Mark Voorhies Practical Bioinformatics

Introduction to Python

Summary

Python is a general purpose programming language.

We can extend Python’s built-in functions by defining our own
functions (or by importing third party modules).

We can define complex behaviors through control statements
like “for”, “while”, and “if”.

We can use an interactive Python session to experiment with.
new ideas and to explore data.

Saving interactive sessions is a good way to document our
computer “experiments”.

Likewise, we can use modules and scripts to document our
computer “protocols”.

Most of these statements are applicable to any programming
language (Perl, R, Bash, Java, C/C++, FORTRAN, ...)

Mark Voorhies Practical Bioinformatics

Introduction to Python

Summary

Python is a general purpose programming language.

We can extend Python’s built-in functions by defining our own
functions (or by importing third party modules).

We can define complex behaviors through control statements
like “for”, “while”, and “if”.

We can use an interactive Python session to experiment with.
new ideas and to explore data.

Saving interactive sessions is a good way to document our
computer “experiments”.

Likewise, we can use modules and scripts to document our
computer “protocols”.

Most of these statements are applicable to any programming
language (Perl, R, Bash, Java, C/C++, FORTRAN, ...)

Mark Voorhies Practical Bioinformatics

Introduction to Python

Summary

Python is a general purpose programming language.

We can extend Python’s built-in functions by defining our own
functions (or by importing third party modules).

We can define complex behaviors through control statements
like “for”, “while”, and “if”.

We can use an interactive Python session to experiment with.
new ideas and to explore data.

Saving interactive sessions is a good way to document our
computer “experiments”.

Likewise, we can use modules and scripts to document our
computer “protocols”.

Most of these statements are applicable to any programming
language (Perl, R, Bash, Java, C/C++, FORTRAN, ...)

Mark Voorhies Practical Bioinformatics

Introduction to Python

Summary

Python is a general purpose programming language.

We can extend Python’s built-in functions by defining our own
functions (or by importing third party modules).

We can define complex behaviors through control statements
like “for”, “while”, and “if”.

We can use an interactive Python session to experiment with.
new ideas and to explore data.

Saving interactive sessions is a good way to document our
computer “experiments”.

Likewise, we can use modules and scripts to document our
computer “protocols”.

Most of these statements are applicable to any programming
language (Perl, R, Bash, Java, C/C++, FORTRAN, ...)

Mark Voorhies Practical Bioinformatics

Introduction to Python

Summary

Python is a general purpose programming language.

We can extend Python’s built-in functions by defining our own
functions (or by importing third party modules).

We can define complex behaviors through control statements
like “for”, “while”, and “if”.

We can use an interactive Python session to experiment with.
new ideas and to explore data.

Saving interactive sessions is a good way to document our
computer “experiments”.

Likewise, we can use modules and scripts to document our
computer “protocols”.

Most of these statements are applicable to any programming
language (Perl, R, Bash, Java, C/C++, FORTRAN, ...)

Mark Voorhies Practical Bioinformatics

Introduction to Python

Summary

Python is a general purpose programming language.

We can extend Python’s built-in functions by defining our own
functions (or by importing third party modules).

We can define complex behaviors through control statements
like “for”, “while”, and “if”.

We can use an interactive Python session to experiment with.
new ideas and to explore data.

Saving interactive sessions is a good way to document our
computer “experiments”.

Likewise, we can use modules and scripts to document our
computer “protocols”.

Most of these statements are applicable to any programming
language (Perl, R, Bash, Java, C/C++, FORTRAN, ...)

Mark Voorhies Practical Bioinformatics

	Introduction to Python

