Practical Bioinformatics

Mark Voorhies

6/20/2010

Mark Voorhies Practical Bioinformatics

Clustering exercises — Scripting Cluster

Modify the clustering protocol script to run Cluster3 multiple times
on the same input, varying distance metric and/or clustering
method. Be sure to give the output files distinct names.

Mark Voorhies Practical Bioinformatics

Clustering exercises — Scripting Cluster

Modify the clustering protocol script to run Cluster3 multiple times
on the same input, varying distance metric and/or clustering
method. Be sure to give the output files distinct names.

metrics = (" None”,
"Uncentered"” ,
" Pearson” ,
"UncenteredAbs” ,
" PearsonAbs" ,
" Spearman” ,

" Kendall”,
"Euclidean” ,
" City")

linkage = (("Complete” ,"m"),
("Single” ,"s"),
(" Centroid” ,"c"),
(" Average” ,"a"))

Loop over all 32 possible methods

print " Starting hierarchical clustering runs...”
from subprocess import check-call

for metric in xrange(1l,len(metrics)):

print " " ,metrics [metric],” ..."
for (linkname, link) in linkage:
print " ", linkname
check_call (("cluster” ,"—f" " shuffled . txt",
"—u” " " Cjoin (("shuffled”,

metrics [metric],
linkname)),
"—m" ,link ,"—g" ,str(metric)))

Mark Voorhies Practical Bioinformatics

Clustering exercises — Negative controls

Add functions to TdtRatios to reproduce the shuffling controls in
figure 3 of the Eisen paper (removing correlations among genes
and/or arrays).

Mark Voorhies Practical Bioinformatics

Clustering exercises — Negative controls

Add functions to TdtRatios to reproduce the shuffling controls in
figure 3 of the Eisen paper (removing correlations among genes
and/or arrays).

def shuffleRows(self, seed = None):
""" Permute ratio values within rows.""”
import random
if (seed != None):
random . seed (seed)
for i in self.ratios:
random.shuffle (i)

Mark Voorhies Practical Bioinformatics

Clustering exercises — Negative controls

Add functions to TdtRatios to reproduce the shuffling controls in
figure 3 of the Eisen paper (removing correlations among genes

and/or arrays).
def shuffleRows(self, seed = None):

""" Permute ratio values within rows.”"”
import random

if (seed != None):
random . seed (seed)
for i in self.ratios:

random.shuffle (i)

def shuffleCols(self, seed = None):

""" Permute ratio values within columns.”""

import random

if (seed != None):
random .seed (seed)

Transpose the expression matrix

cols = []

for col in xrange(len(self.ratios[0])):
cols.append ([row[col] for row in self.ratios])

Shuffle

for i in cols:
random.shuffle (i)

Transpose back to original orientation

self.ratios = []

for row in xrange(len(cols)):
self.ratios.append([col[row] for col in row])

Mark Voorhies Practical Bioinformatics

Clustering exercises — JavaTreeView

Cluster supp2data.tdt and explore the results in JavaTreeView.
Can you identify the clusters from figure 2 of the Eisen paper. Click
on gene names to open the corresponding SGD annotations in your
web browser. Are the current annotations consistent with those in
supp2data.tdt? Are they consistent with the clustering pattern?

Mark Voorhies Practical Bioinformatics

sl = set((1,2,3,4,5))
s2 = set((1,3,5,7))

sl.union(s2) = set((1,2,3,4,5,7))
sl.difference(s2) = set((2,4))
sl.intersection(s2) = set((1,3,5))

Mark Voorhies Practical Bioinformatics

clusterl = set(i.strip() for i in open(”"clusterl.uids"))
cluster2 = set(i.strip() for i in open(”cluster2.uids”))
cluster3 set(i.strip() for i in open(”cluster3.uids"))

clusterl.intersection (cluster2)
clusterl.intersection (cluster2).intersection(cluster3)
clusterl .intersection(cluster2).difference(cluster3)

Mark Voorhies Practical Bioinformatics

clusterl = set(i.strip() for i in open(”"clusterl.uids"))
cluster2 = set(i.strip() for i in open(”cluster2.uids”))
cluster3 = set(i.strip() for i in open(”cluster3.uids"))

clusterl.intersection (cluster2)
clusterl.intersection (cluster2).intersection(cluster3)
clusterl .intersection(cluster2).difference(cluster3)

@ Export several overlapping UID lists from Java TreeView and
use sets to find their intersections.

@ Export UID lists for similar clusters from two different CDT
files and use sets to compare them. Explore the
non-intersecting elements in Java TreeView.

© Use sets of gene names to compare your clusters to the
annotated clusters in figure 2 of the Eisen paper.

Mark Voorhies Practical Bioinformatics

Clustering exercises — Visualizing the distance matrix

Write your pairwise distance matrix to a CDT file (in this case, the
rows and columns are both genes) and visualize it in JavaTreeView.

Mark Voorhies Practical Bioinformatics

Clustering exercises — Visualizing the distance matrix

Write your pairwise distance matrix to a CDT file (in this case, the
rows and columns are both genes) and visualize it in JavaTreeView.

class DistanceMatrix:

def __init__(self, genes, annotations, ratios, metric):
self.genes = genes
self.annotations = annotations
self.distances = []
for i in self.ratios:

self.distances.append ([])
for j in self.ratios:
self.distances[—1].append(metric(i,j))

def writeCDT (self, filename):

fp = open(filename ,"w")

fp.write("\t".join (["GID" ,”UNIQID" ,"NAME" |+
["GWEIGHT"]+ self . genes)+"\n")

fp.write("\t".join (["EWEIGHT"]4+[""]*3+
["1.0"]xlen(self.genes))+"\n")

for i in range(len(self.genes)):

fp.write ("GENE%4dX" % (i+1))

fp.write("\t"+self.genes[i])
fp.write("\t"+self.annotations[i])
fp.write("\t1.0")
for j in self.distances[i]:

if(j = None):

fp.write("\t"+"")
else:
fp.write ("\t%f" % j)
fp.write(”"\n")

Mark Voorhies Practical Bioinformatics

Clustering exercises — Visualizing the distance matrix

Write your pairwise distance matrix to a CDT file (in this case, the
rows and columns are both genes) and visualize it in JavaTreeView.

class DistanceMatrix:
def __init__(self, genes, annotations, ratios, metric):
self.genes = genes
self.annotations = annotations
self.distances = []

for i in self.ratios:
self.distances.append ([])
for j in self.ratios:
self.distances[—1].append(metric(i,j))

Left as exercises for the reader:

o Rewrite __init__ to avoid
redundant calls for (i,j)
and (j,i).

e Add an option to load a

def writeCDT (self, filename):

fp = open(filename ,"w")

fp.write(”"\t".join (["GID" ,"UNIQID" ,"NAME" |+
["GWEIGHT"]+ self . genes)+"\n")
fp.write ("\t".join (["EWEIGHT" J+[""]*3+
["1.0"]xlen(self.genes))+"\n")
for i in range(len(self.genes)):
fp.write (" GENE%4dX” % (i+1))
fp.write("\t"+self.genes[i])
fp.write("\t"+self.annotations[i])
fp.write("\t1.0")

for j in self.distances[i]:
if(j = None):
fp.write("\t"+"")
else:

fp.write (" \t%f"
fp.write(”"\n")

% J)

o

matrix from a CDT file
rather than calculating it.

Rewrite the class to store
only the upper triangle of
the matrix. Can you
provide an interface that
mimics storing the full
matrix?

Mark Voorhies Practical Bioinformatics

Clustering exercises — Visualizing the distance matrix

Mark Voorhies Practical Bioinformatics

Dictionaries

dictionary = {"A":"T" ,"T":"A" ,"G"."C" ,"C":"G" }
dictionary ["G"]

dictionary ["N"] = "N"

dictionary.has_key("C")

Mark Voorhies Practical Bioinformatics

Dictionaries

geneticCode = {"TTT":"F" "TTC":"F" ,"TTA" :"L" ,"TTG" :"L"
"CTTY Lt CTC L "CTA L TG L
VATTY T PATC T TATA T TATG MY
U"GTT" :"V" ,"GTC" :"V” :

<

"TCT
"CCT”
"ACT”
"GCT" "

T TCeC
,"ccer
,"ACC”
JUGCCT AT T

)
>H49w

"TAT" YT "TACT
"CAT” :"H" ,"CAC" :"
"AAT" "N AACT T
"GAT” :"D" ,"GAC" :

"TGT” :"C" L TGC M CY L TGA” K" U TGG W
"CGT" :"R" ,"CGC" :"R" ,"CGA" :"R" ,"CGG" :"R"
"AGT” :"S" ,"AGC" :"S" ,"AGA" :"R" ,"AGG" :"R"
"GGT” :"G" ,"GGC" :"G" ,"GGA" :"G" ,"GGG" :"G" }

Mark Voorhies Practical Bioinformatics

Exercise: Transforming sequences

@ Write a function to return the antisense strand of a DNA
sequence in 3'—=5" orientation.

@ Write a function to return the compliment of a DNA sequence
in 5'—3’ orientation.

© Write a function to translate a DNA sequence

Mark Voorhies Practical Bioinformatics

Exercise: Scoring an ungapped alignment

N

S(xy) = 3 s 1) (1)

i

@ Given two equal length sequences and a scoring matrix, return
the alignment score for a full length, ungapped alignment.

Mark Voorhies Practical Bioinformatics

Exercise: Scoring a gapped alignment

gaps
Sgapped(X,¥) = S(x,¥) + > G + E x len(i) (2)

@ Given two equal length gapped sequences (where
represents a gap) and a scoring matrix, calculate an alignment
score with a -1 penalty for each base aligned to a gap.

@ Write a new scoring function with separate penalties for
opening a zero length gap (e.g., G = -11) and extending an
open gap by one base (e.g., E = -1).

Mark Voorhies Practical Bioinformatics

