x = [1,2,3,4,5]
def f(y):
print(y)
f(3)
y
f(x)
def f(y):
print(x)
f(3)
def f(x):
print(x)
f(3)
x
y = [i**2 for i in x]
y
y = []
for i in x:
y.append(i**2)
y
%pwd
%cd ../data/
!ls
from csv import reader, excel_tab
orfs = []
names = []
data = []
fp = reader(open("GSE88801_kallisto_TPMs_thresh10.cdt"),dialect=excel_tab)
header = next(fp)
for row in fp:
orfs.append(row[0])
names.append(row[1])
d = []
for col in row[2:]:
d.append(float(col))
data.append(d)
len(orfs),len(names),len(data)
len(data[0])
print(data[0])
data[0][0]
%cd ../Notebooks/
from stats import pearson
pearson(data[0],data[1])
orfs[0]
orfs[1]
pearson(data[0],data[2])
header
data[0][0]
data[0][2]
col1 = []
col2 = []
for row in data:
col1.append(row[0])
col2.append(row[2])
pearson(col1,col2)
col1 = []
col2 = []
for row in data:
col1.append(row[0])
col2.append(row[1])
pearson(col1,col2)
def colpearson(data,c1,c2):
col1 = []
col2 = []
for row in data:
col1.append(row[c1])
col2.append(row[c2])
return pearson(col1,col2)
colpearson(data,0,2)
header = header[2:]
header[0],header[2]
colpearson(data,0,1)
%matplotlib nbagg
import matplotlib.pyplot as plt
sdata1 = data[:10]
from random import seed, sample
seed(42)
sdata2 = sample(data,10)
n = sample(range(len(data)),10)
sdata2 = []
sorfs2 = []
for i in n:
sdata2.append(data[i])
sorfs2.append(orfs[i])
sorfs2
def transpose(M):
T = []
for col in range(len(M[0])):
Trow = []
for row in M:
Trow.append(row[col])
T.append(Trow)
return T
fig = plt.figure()
b = plt.boxplot(transpose(data))
fig = plt.figure()
b = plt.boxplot(transpose(sdata2))